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examined in the context of broken-line flows and it appears that they can be 
derived only for special cases. 
contributions. 

The difficulty is traced to the interfacial 

A three-layer model in which 6 ( z )  and e(z) have piecewise constant 
values and which is disturbed by longitudinal perturbations with dimensionless 
wave number k is examined in detail. The characterist ic values a r e  given by 
a quartic equation in v in which the basic state flow appears via four dimension- 
less parameters  and are measures of the fljumpsff in g(z) and u(z)  across  
the interfacial surfaces.  Fo r  sufficiently large k, the motions at the upper 
and lower interfaces behave as unstable two-layer Kelvin-Helmholtz flows. 
A s  k approaches zero,  the coupling between the motions at the two interfaces 
is enhanced, and fo r  sufficiently small  values of k, the motions are neutral 
provided the 'Ijumpsff in s (z) across  the interfacial surfaces do not vanish: 
otherwise, a l l  perturbations a r e  unstable. Numerical calculations show that 
the cri t ical  wave number can be both single- and triple-valued functions of the 
basic state flow parameters  with the curious resul t  that a decrease in shear o r  
an increase in static stability could result  in destabilization. The three-layer 
model is applied to synoptic scale jet s t ream flows, and explicit results are 
obtained for  the Endlich and McLean jet s t ream model. 
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SHEAR LAYERAND JET I N S T A B I L I T Y  IN  STRATIFIED M E D I A  

S U M M A R Y  

The stability to small  perturbations of shear  layer and jet flows u(z)  
in atmospheres with potential temperature s (z) is investigated. 
is reduced to a characterist ic value problem for  the dimensionless wave 
frequency v which appears in a second-order differential equation with the 
dependent variable being the horizontal and temporal Fourier  transform ampli- 
tude of the vertical component of the perturbation momentum vector. 
line profiles of u(z)  and g (z )  are used in the analysis of this equation. 

The problem 

Broken- 

Integral equations, over the domain of the fluid, which contain both 
quadratic forms and interfacial contributions , a r e  derived. The interfacial 
t e rms  vanish for continuous flows, and the theorems of Synge, Howard, and 
Miles follow. A necessary and sufficient condition for instability is also 
obtained for  continuous flows; however, its usefulness is coinpromised by 
integrands which depend on both the basic state flow and the dependent variable 
of the governing differential equation. 
in the context of broken-line flows, and i t  appears that they can be derived only 
for  special cases. 

The theorems jus t  cited a r e  examined 

The difficulty is traced to the interfacial contributions. 

A three-layer model in which u( z) and 0 (z )  have piecewise constant 
values and which is disturbed by longitudinal perturbations with dimensionless 
wave number k is examined in detail. The characteristic values are given 
by a quartic equation in I, in which the basic state flow appears via four 
dimensionless parameters  and a r e  measures of the "jumps" in 8 (z )  and u(z) 
across  the interfacial surfaces. 
upper and lower interfaces behave as unstable two-layer Ke lVl I~ -He l~n l~o l t z  
flows. A s  k approaches zero,  the coupling between the motions at the two 
interfaces is enhanced, and fo r  sufficiently small  values of k, the motions 
are neutral provided the "jumps" in 8 (z )  
not vanish, otherwise all perturbations a r e  unstable. 
show that the cri t ical  wave number can be both single- and triple-valued 
functions of the basic state flow parameters  with the curious result  that a 
decrease in shear  or an increase in static stability could result  in destabiliza- 
tion. The three-layer model is applied to synoptic scale jet s t ream flows and 
explicit resul ts  are obtained for  the Endlich and McLean jet s t r eam model. 

For  sufficiently large . k, the motions at the 

across  the interfacial surfaces do 
Numerical calculations 



I NTR OD UCT I ON 

Typical vertical wind profiles in the f i r s t  20 km of the atmosphere show 
that jet and shear  layer flows occur frequently. 
these flows range between 0. i and 10 km. 
length scales on the order of 10 km correspond to the synoptic scale baroclinic 
jets, while those flows characterized by length scales on the order of 0. i km 
correspond to small  meso- and micro-scale jets and shear layers. In many 

The vertical length scales of 
The flows that possess the vertical 

~ 

of these flows, the growth of perturbations through hydrodynamic instability 
is made possible by certain configurations of thermodynamic (entropy, 
temperature, etc. ) and dynamic (vorticity, momentum, etc.') variables. 
The horizontal length scales of these perturbations o r  eddies range between 
0.1 and I O 3  kmj  while the associated vertical length scales are on the order of 
the vertical scales  of the configurations responsible for  the generation of these 
instabilities. 

The generation in statically stable atmospheres of shear  layer  and jet 
instabilities with typical horizontal length scales less than 50 km is now an 
important subject for  investigation in both the meteorology and engineering 
communities. The main source of the instability is the presence of sufficient 
shear of the wind to overcome stabilizing forces. 
to grow, in an inviscid context, the production rate of eddy kinetic energy 
must be greater than the rate at which energy is expended by the eddies in 
performing work to overcome the stabilizing character of the statically stable 
distribution of potential temperature associated with the vertical profile of the 
wind . 

In order for the perturbations 

. 

The motivation for the interest in the subject is by no means academic. 
It has been suggested that this type of instability is responsible for  the genera- 
tion of clear  air tiirbulence in the vicinity of the synoptic scale jet s t reams [ l]. 
It is also possible to envlsivii the generation of c lear  air turbulence via this 
instability mechanism in mesoscale jet and shear  layer flows, For  synoptic 
scale flows, the generation of shear  layer and jet instabilities is a process 
whereby kinetic energy is directly converted f rom the synoptic scale to the 
small  meso- and micro-scale motions. This report  will  be devoted to the 
examination of shear  layer and jet instability phenomena characterized by 
horizontal length scales less than 50 km. 

2 



Problem 

To understand how shear  layer and jet instabilities occur in the 
atmosphere, it is necessary to relate the shear  layer or  jet flow in either case 
to the instability. 
flow to be a steady-state solution of the hydrodynamic equations and super- 
imposing a disturbance. 
dependent variables are assumed to satisfy the hydrodynamic equations. This 
representation of the instability or disturbance in relation to the steady-state 
flow wi l l  result in a set of nonlinear, homogeneous, partial differential 
lfdisturbancelf or  "perturbation" equations. These equations are explicitly 
dependent on the steady-state flow which forces the disturbance. It is also 
possible to force the disturbance through the boundary or initial conditions. 
The solution of the disturbance equations for specified boundary and initial 
conditions wi l l  yield the stability properties of the steady-state flow configura- 
tion and, if instability is possible, wi l l  also yield the relationship between the 
steady-state flow and the instability. If the solution shows that all disturbances 
decay in time, then the steady-state flow is said to be stable. However, if a 
nondecaying solution exists,  then the steady-state flow is said to be unstable 
[2] .  Finally, if the disturbance amplitudes neither decay nor grow in time, 
then the steady-state flow is said to possess neutral stability. 

This can be accomplished by taking the shear  layer  or  jet 

The sums of the steady-state and disturbance 

A variety of techniques exist for  obtaining solutions to the nonlinear 
disturbance equations. 
linear perturbation expansions in which one systematically linearizes these 
equations. In this procedure, the dependent disturbance variables, q 5 ,  a re  
expanded in t e rms  of a small  scaling parameter E ,  

One of the most elegant schemes is the method of 

so  that 

th 
, where q5 is the n order  contribution to @. The selection of the scaling 

parameter is dictated by the problem. Upon substituting these expansions into 
the disturbance equations, collecting te rms  in ascending powers of E, and 
requiring the equation to be satisfied fo r  arbitrary E ,  

system of linear differential equations that govern the behavior of Cp 

(n = I ,  2, 3 ,  . . . ) . The equations associated with E (first order) govern 
the first-order disturbances Cpl and could have been derived f rom the non- 
l inear disturbance equations by neglecting all te rms  that a r e  nonlinear in the 

n 

one obtains an infinite 

n 

3 



disturbance quantities -~ ab initio. 
yields the conditions fo r  the initial onset of instability when the disturbances 
are infinitesimally small. 
steady-state shear layer o r  jet flow (zero-order flow) . This forcing does not 
occur explicitly through a forcing function, but it occurs implicitly through 
the coefficients in the first-order disturbance equations and through the 
associated boundary conditions. The disturbance o r  perturbation equations 
associated with c2 (second order) govern the second-order contributions to 
the disturbances. These equations are nonhomogeneous and they are linear 
in the second-order dependent variables @2. The second-order instabilities 
are forced explicitly by the zero- and first-order flows through forcing 
functions that make the second-order equations nonhomogeneous. The origin 
of this explicit forcing can be traced to the nonlinear te rms  in the original 
disturbance equations. 
- ad infinitum - the only limitation of the procedure is the mathematical 
prowess of the theoretician. 

The solution of the first-order equations 

The first-order instabilities are forced by the 

This iterative procedure can be carr ied out 

It is unusually difficult to solve the linearized disturbance equations for 
the second- and higher-order instabilities for all but the most simple zero- 
order  flows. An example of the type of flow that has been analyzed with this 
technique is finite amplitude cellular convection [ 3 , 4 ]  in a hydrostatic layer 
of fluid. 
difficult to analyze. Shear layer and jet flows in stratified media a r e  a class  
of flows that have been extremely difficult to analyze with regard to the second- 
and higher-order instabilities. In fact, our knowledge concerning the first- 
order  instabilities is meager, especially in the case of jet  flows. A thorough 
understanding of the generation of the first-order instabilities would aid 
theoreticians in developing a comprehensive approach to the problem of 
analyzing the second- and higher-order flow states. 
solutions could also enable one to obtain a c learer  picture of the generation of 
c lear  air turbulence in jets and shear layers ,  which is of manifest importance 
in developing clear  air turbulence forecasting procedures. 

Even in this case,  the fifth- and higher-order instabilities a r e  

In addition, the first-order 

The perturbation equations which govern the first-order instabilities 
of the form to be considered here permit consideration of disturbances 

A -  
where t is the time, @i(r)  is a function of the position vector and 
and i = a. Upon substituting this form of the disturbance into the 

4 



first-orde,r equations, a set of partial  differential equations are obtained 
relating @i(s and w. 
constitute an eigenvalue problem for  w. 
order  flow are specified by determining the ensemble of eigenvalues o r  
characterist ic values of w. If we denote the real  and imaginary parts of w 
by Re(w) and Im(w) , respectively, then i t  follows from equation (2) that 
the disturbances will  decay in time if Im(w) > 0. In this case,  the zero-,order 
flow is said to be stable. However, if Im(w) < 0, then the disturbance wi l l  
increase in time without bound and the zero-order flow is said to be unstable. 
Finally, if Im(u )  = 0, then the disturbance w i l l  be steady if Re (o )  = 0, o r  
oscillatory in time if Re(w) # 0; . in either case,  the flow is said to be neutral. 

These equations and the associated boundary conditions 
The stability properties of the zero- 

The appropriate disturbance equations for studying the first-order shear  
layer and jet instabilities are the linearized, Boussinesq-approximated, 
hydrodynamic equations. These equations a re  valid for  vertical length scales 
less than the local zero-order scale height and frequencies less than a typical 
zero-order Brunt-Vaisala frequency. The zero-order flow is taken to be a 
steady-state jet o r  shear layer flow characterized by a velocity distribution 
J ( z ) y  and a potential temperature distribution e (z)  , 
directed coordinate and 
order  flows depend on z, the horizontal space coordinates, x and y ,  and 
the time t, 
wi l l  be neglected. 
length scales and the time scales  of the zero-order flow must be very large in 
comparison to the corresponding scales of the perturbations. The first-order 
perturbation equations consist of three linearized momentum conservation 
equations, a linearized mass conservation equation, and a l inear form of the 
f i r s t  law of thermodynamics. Upon combining these equations into one equation 
with one unknown, and assuming normal mode solutions, one finds that 

where z is the zenith- 
is a horizontal unit vector. Although the zero- 

in the stability calculations, the horizontal and temporal variations 
In order  f o r  this approximation to be valid, the horizontal 

In this equation, K~ and K~ a r e  the horizontal components of the wave number 
vector of the first-order disturbances parallel and normal to u( z) i , and J, 
is the normal mode amplitude of the vertical component of the first-order 
momentum density vector. The quantities u and s are known functions of z . 
The boundary conditions for this equation are given by 

5 



$ = O  (at a rigid surface) 

and 

(4) 

Equation (4) is a statement that the vertical  velocity must vanish on a horizontal 
rigid surface and equation (5) requires the perturbation pressure to vanish as 
z approaches infinity. 

Equations (3) , (4) , and (5) represent a characterist ic value problem 
for  w.  Thus, upon determining the solution, w will  automatically be 
determined and the stability properties of the zero-order of basic state flow 
wi l l  be known within the context of the first-order theory. However, only very 
special forms of u and e permit one to obtain analytical solutions for  the 
system given by equations (3)  through (5). In the case of such closed-form 
solutions, one has  an eigenvalue equation o r  dispersion relation available 
to perform the stability analysis. This equation relates the eigenfrequencies 
of the system to the disturbance wave numbers and the adjustable parameters  
of the basic state flow. 
permit one to analyze the eigenvalues of the system directly through the 
dispersion relation. 

The important point is that closed-form solutions 

When u and do not permit analytical integration of equation (3)  , 
one must use numerical methods; but then, many solutions a r e  needed to 
determine how the stability of the basic state depends upon the features of the 
basic state profiles. Moreover, an explicit characterist ic equation is no longer 
available to  relate the system parameters to the eigenvalues; therefore, a 
succession of numerical experiments is necessary to determine the dependence 
of the eigenvalues upon the system parameters.  
to become voluminous, so that one must usually res t r ic t  the analysis to a few 
special cases. These difficulties can be circumvented by adopting an approxi- 
mate model of the basic state which yields closed-form solutions and dispersion 
relations. The method of broken-line analysis is an ofterr-used procedure 
which has played a major role in the development of meteorology and fluid 
mechanics. In the broken-line model, the basic state flow is partitioned into 
a ser ies  of layers  in which the variables u and 6 take on constant but 
different values. From a mathematical point of view, these discontinuous, 
o r  broken-line, profiles allow closed-form solutions to equations (3)  through 
(5). Variation of the magnitudes of u and 5 simulates a host of basic state 

The numerical results tend 
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flows. Admittedly, discontinuous profiles of u and s do not occur in nature; 
nevertheless, they permit solutions to  equations (3) through (5) which resemble 
those associated with the continuous counterparts for  disturbances with 
sufficiently long wavelengths. The main purpose of this report  is to exploit 
this method to analyze the stability properties of shear  layer and jet flows in 
the context of equations (3 )  through (5). 

L i te ra tu re  Review 

The subject of jet and shear  layer instability in heterogeneous (or 
stratified) fluids has received extensive investigation during the last 100 years.  
The well-known and powerful tool of linear perturbation analysis has been one 
of the primary means for  investigation of this subject. The first reference to 
shear layer instability is due to Von Helmholtz [51 who treated the topic 
qualitatively. Lord Kelvin [ 61 in 1871 investigated the subject quantitatively 
by examining the stability properties of a simple unbounded two-layer model, 
in which each layer had constant but different values for  the unperturbed 
density and velocity and the mean velocity vectors in each layer were parallel. 
The primary conclusion of his analysis w a s  that spatially and temporally 
sinusoidal perturbations wi l l  be unstable and will  thus grow exponentially 
time if the quantity 

in 

( 6 )  

> 4  is less than unity. The perturbations wi l l  be neutral oscillations if R k 1. 
K. H. 

In equation ( 6 )  , and u denote the unperturbed density and velocity, and the 
subscripts 1 A d  2 denote conditions in the lower and upper layers. According 
to equation (6) , if a disturbance with energy in a wave number band containing 
a wave number vector K such that ( K  I > K ' ~  , then instability will  occur and 
the perturbations wi l l  grow exponentially in time. The crit ical  wave number 
K': is defined as 

- 4  .-) 

7 

I 



50 being the angle between the mean flow direction and the direction of propaga- 
tion of the disturbance. This type of instability has come to be known as the 
Kelvin-Helmholtz instability in honor of the f i r s t  contributors, and subsequent 
analyses have been extensions of their  pioneering work. Many authors refer 
to all shear  layer and jet instabilities as Kelvin-Helmholtz instabilities. 
However, in this report  there will  be occasions in which we will  relate the 
results of the analyses to those of Kelvin and Helmholtz, as well  as to the 
results of other investigators. Thus, to avoid ambiguity $e will  use "Kelvin- 
Helmholtz instability" to refer exclusively to the original' model of Kelvin and 
Helmholtz. 

The first application of shear  layer instability theory to meteorological 
problems was in the field of cloud physics where it w a s  used to explain the 
formation of transverse cloud rows which are normal to the direction of the 
shear  vector. The major contributors were Von Helmholtz [ 7 ]  , Wegener 
[8,9]  , Haurwitz [IO] , and Sekera [ I l l .  More recently, Lundlum [ I 2 1  has 
analyzed billow cloud formation in relation to c lear  air turbulence in the 
context of shear layer instability theory. 

Many investigators have used discontinuous flow models to analyze 
various types of hydrodynamic instabilities. 
Physikalische Hydrodynamik by V. Bjerknes et al. [ 131 and Dynamic 
Meteorology - and Weather Forecasting by Godske et al. [I41 give accurate 
accounts of the major contributions during this period. In most of these 
analyses the investigators used two-layer models characterized by four basic 
state parameters,  a dynamic o r  kinematic quantity (wind speed, wind shear,  
etc. ) and a thermodynamic quantity (density, temperature, lapse rate, etc. ) 
for  each layer and w e r e  usually specified as constants. 
were usually modeled in a s imilar  manner, but a s  the number of layers 
increased the complexity of the associated characterist ic equations increased. 
The dispersion equations of these layered systems w e r e  either polynomials in 
w of degree 2N, where N is the number of interfaces in the system, o r  
transcendental equations in w. In the absence of modern digital computers, 
these investigators had to res t r ic t  their analyses to special cases  for  which 
they could extract the roots of the characterist ic equation. 

The monumental volumes 

Multilayered flows 

The efforts of Taylor [ 151 and Goldstein [ 161 are good examples of the 
type of multilayered calculations that were made during this period. Taylor 
and Goldstein elaborated upon Kelvin's work by introducing more layers,  as 
wel l  as single-valued piecewise continuous velocity profiles. However, in no 
case w a s  a jet-like profile examined. The work of Goldstein and Taylor 
appears to yield results that contradict Kelvin's work. For example, Taylor 
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examined a three-layer model in which the density assumed constant but 
different values in each layer,  and the velocity in the upper and lower semi- 
infinite layers  also had constant but different values in each layer. However, 
the velocity distribution in the middle layer w a s  assumed to have a l inear 
variation such that the complete profile was single-valued at the density 
discontinuities. In this case,  Taylor found that, for  a given velocity and 
density distribution, the range of the unstable wave numbers is bounded from 
above and below and is rather  narrow. This result  is to be compared with 
Kelvin's which states that all disturbances with wave numbers greater than 
a lower cutoff value are unstable. Taylor argued that his resul t  could be 
explained by a backward-moving free wave on the upper interface moving with 
the same speed as a forward-moving free wave at the lower intefiace, so that 
the instability might be regarded as due to a so r t  of resonance between two 
waves with the same wavelength moving in opposite directions with the same 
wavelength and speed. 

Rosenhead [ 171 replaced Kelvin's interfacial vortex sheet with finite 
two-dimensional vortices,  arranged at equal distances along a straight line. 
Disturbing this system sinusoidally, Rosenhead found that the mutual action 
of the vortices will  accelerate the disturbance and render the initial motions 
unstable. A s  the instability grows, the interface between the two fluids wi l l  
roll  up, and the motions which are thus eventually produced wi l l  resemble 
vortex motions rather  than wave motions. This rolling up of the unstable 
interface causes the wave to break. This type of wave breaking has been 
observed by Thorpe [I81 in laboratory experiments. According to Woods in 
1968, it is believed that a similar wave-breaking phenomenon occurs in the 
atmosphere a n d i s  one of the sources of c lear  a i r  turbulence. The linear 
first-order perturbation theory cannot be applied to this breaking phenomenon, 
because i t  is only applicable a t  the initial stages of the instability when the 
amplitudes of the disthrbance are small. However, the linear first-order 
theory can predict the wavelengths of the perturbations that could ultimately 
break in the subsequent growth of the instability. 

The renewed interest  in the subject of shear layer and jet instability 
during the last 10 years  has been motivated by both engineering and scientific 
considerations. In the last decade, it became obvious that a i rcraf t  designers 
would have to account for  the phenomenon of c lear  air turbulence in the design 
of high performance military and commercial aircraft. To supply the design 
engineer with design cr i ter ia ,  many investigators in the meteorological 
community intensified their efforts in the study of meso- and micro-scale 
flows in the free atmosphere. Most of these investigations have been 
empirical  in nature, while a few investigators have attempted to study these 
flows from a theoretical point of view. 
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A great deal of effort has been spent in empirical determination of the 
spectral  nature of meso- and micro-scale motions in the free atmosphere. 
Data on meso- and micro-scale flows have been obtained with accelerometers, 
gust recorders ,  and doppler radars  over various portions of the globe. Thus, 
energy spectra of meso- and micro-scale flows have been obtained for  conditions 
over the United States [ 19,201 , over Australia [21] , and over the USSR 
[22 ,23 ,24 ,25 ,26 ,27~.  Pinus, Reiter, Shur, and Vinnichenko [I] have 
summarized these spectra, most of which appear to  show a dependence on 
wave number K like r5l3 up to scales on the order  of 10 km. However, 
some had slopes greater than 11-5 /311  for scales  greater  than 600 m. Various 
authors have attempted to explain this behavior of the spectrum with the 
concept of the buoyant subrange in which the energy dissipating effects of the 
Archimedian forces resulting from the stable stratification are taken into 
account. Pinus et al. [13 point out that the buoyant subrange may exist under 
conditions of stable stratification and may be seen from scales  of about 
30 to 100 m up to scales  where the energy sources (of unspecified nature) 
balance the buoyant forces.  Based upon dimensional analysis and an assump- 
tion about the relation between the ra te  of energy transfer through the spectrum 
and the Archimedian forces,  various slopes can be derived. Bolgiano [28] 
suggests a slope equal to f1-11/5, If  while Lumley 1291 finds the slope to be 
Il-3. 
under conditions of stable stratification a t  scales greater  than 600 m with a 
slope of the spectral  curve approaching 1T-3f1 [25]. The data in their paper 
seem to corroborate this result. However, these authors point out that the 
buoyant subrange does not exist as a "pure" phenomenon. They note that 
similarity considerations in the theoretical derivation of the spectrum in the 
buoyant subrange take into account only the turbulence-alleviating Archimedian 
forces  under thermally stable conditions, but not the generating forces of 
vertical wind shear.  In the atmosphere mechanical shear  production of eddy 
energy may closely balance buoyant eddy energy dissipation, thus leaving no 
room for  the development of a buoyant subrange. 
that mathematical theory, taking into account the effects of vertical  shear  on 
turbulence spectra,  has yet to be formulated. 

Pinus e t  al. [ l ]  also point out that the buoyant subrange may also exist  

These authors point out 

Based upon an analysis of the power spectra depicted in their paper, 
Pinus et al. [ 13 suggest five regions in the spectrum in which energy may 
be supplied for  the production of c lear  air turbulence. A t  scales  on the order  
of 1000 km energy 'may be input by planetary inertial waves in the general 
circulation. A t  wavelengths somewhat longer than 100 km, energy may be 
supplied by gravity-inertial waves and the l lstr iatedrl  flow patterns that occur 
in the synoptic scale jet  s t reams.  A t  wavelengths somewhat shorter  than 
60 km, energy may be supplied by mesoscale phenomena associated with long 
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gravity and lee waves. A t  horizontal length scales on the order  of I km 
energy may be supplied by short  shear-gravity waves in a stably stratified 
environment. Finally, energy may be input at scales that correspond to 
convection cells in statically unstable layers. 

Investigators are also devoting their efforts to determining those 
conditions in fluids which can produce clear  air turbulence. Based on either 
perturbation theory or energy considerations, the conclusion is usually 
reached that there exists a "critical" value of the Richardson number, defined 
by 

Ri = 

which may characterize the cri t ical  condition for the onset of c lear  air 
turbulence. If Ri is less than a ffcri t ical ' '  value R perturbations can 

grow and turbulence wi l l  be produced. 
Richardson number is for  clear air turbulence is by no means a closed subject. 
In fact, one of the main goals of the first-order perturbation theory is the 
determination of critical values of the Richardson number. Investigators have 
approached the problem of determining R 
methods. 

C Y  

The question of what the cri t ical  

by both experimental and theoretical 
C 

The work of Panofsky e t  al. [30] is one of the most recent examples of 
the work that has been done to determine R from an experimental point of 

view. They analyzed two separate cases  of c lear  a i r  turbulence, one in the 
stratsophere over the Rocky Mountains, the other in the upper troposphere 
over the midwestern Great Plains. 
situations appeared to be similar;  namely, strong baroclinic zones with strong 
vertical wind shears.  
severe  c lear  air turbulence to be located at the edges of baroclinic zones, and 
calculated Richardson numbers for  these zones from finite differences of wind 
speed and potential temperature over a constant increment of height, 
Az  = 500 m. They discovered values of Ri that ranged between 0.23 and 
0.71 and the turbulence intensities ranged between moderate and severe. 
Based upon these resul ts  , they conclude that the "criticalt1 Richardson number 
fo r  the generation of clear air turbulence in strong baroclinic zones is in the 

C 

They explain that the mechanism in both 

They discovered that there is a tendency for  the most 



neighborhood of 0.50; however, they note that the actual value may be lower 
because of data processing and reliability problems or  because the data 
density was.not sufficient to resolve the fine structure in the spatial distribu- 
tions of potential temperature and wind speed. 

F rom a theoretical point of view, significant progress has been made 
with the first-order perturbation theory in determining the cri t ical  conditions 
for the onset of shear  layer and jet instabilities. The theory has  also 
improved our understanding of the essential mechanics of the initial stages 
of these instabilities. The major contributors to the subject, Miles 131,321, 
Howard 133,341 , and Drazin 135,361, have analyzed the stability properties 
of both continuous and discontinuous flows. Fo r  continuous flows, they have 
derived some general theorems concerning these instabilities. The theorems, 
which are discussed later in this report, do not specify the total relationship 
between the basic state flow and the instability; thus, to understand the details 
one must make calculations with specific basic state flows. It appears that 
these investigators, as well  as others, have restricted their calculations with 
specific basic state flows to those in which the velocity distributions are either 
odd o r  even and the associated static stability is even. 
objectives of this report  is to determine the dependence of shear layer and jet 
instability upon the asymmetry and symmetry properties of the basic state 
flow. 

Thus, one of the 

Of Things to Come 

Later in this report, we derive the first-order perturbation equations 
appropriate for  analyzing shear layer and jet instabilities from the hydro- 
dynamic equations for isentropic flow. The basic state is assumed to be a 
horizontal parallel isentropic flow. It is shown, by restricting the analysis 
to perturbations with horizontal length scales less than 50 km, that Coriolis 
forces and horizontal variations in  the basic state flow can be neglected in the 
first-order perturbation equations. Acoustic modes a re  filtered from the 
equations with the Boussinesq approximation. In a stable stratification, the 
maximum permissible frequency of the perturbations is on the order of the 
Brunt-Vaisala frequency. The perturbations are represented by Fourier 
integrals and the resulting Fourier transformed first-order equations are 
combined into one second-order differential equation in the Fourier amplitude 
of the vertical component of the perturbation momentum density vector. 
Finally, boundary and interfacial conditions for continuous and broken-line 
flows are derived. 
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Next, we consider the general properties ot the governing differential 
equation and the associated boundary and interfacial conditions. The subject 
begins with a general discussion of the solutions for three classes  of broken- 
line flows, namely, (1) continuous layers  in - which ; and ; are constants, 

(2)  contiguous layers  in which u and - - de a r e  constants, and ( 3 )  contin- e' dz 
uous layers in which u is a linear function of z and e is constant. A 
theorem concerning the permissible number of modes these systems can 
possess is derived. We then examine the consequence of two transformations of 
the dependent variable. The utilization of these transformations wi l l  yield 
three theorems that w e r e  first derived by Mi le s  [311 , Howard [33] ,  and 
Synge [37] for continuous e' and u profiles. In addition, a necessary and 
sufficient condition for  the existence of unstable solutions for atmospheres - 
characterized by - - dG f 0 is derived. It is shown that this condition leads s dz 
to the result  that all continuous flows which are statically unstable everywhere 
are dynamically unstable to small  perturbations. 
discussed in the context of broken-line flows. 

These theorems are also 

Finally, we  examine in detail the dynamic stability properties of three- 
layer flows of type 1 (contiguous layers in which u and e a r e  constants).  The 
dispersion relation for this model is a quartic in w , 
this equation a r e  functions of the basic state parameters and the wave number of 
the perturbations. 
examine jets and shear  layers which possess a wide range of symmetry and 
asymmetry properties. The stability properties of these three-layer flows 
a r e  compared with the results of other investigators. The theory is applied to 
the problem of the generation of instabilities in the vicinity of the synoptic 
scale jet s t reams.  

and the coefficients in 

By varying the basic state flow parameters we a r e  able to 

DEVELOPMENT OF BAS I C  EQUATIONS AND BOUNDARY 
AND INTERFACIAL CONDITIONS 

The fundamental equations and boundary and interfacial conditions 
appropriate fo r  the analysis of shear  layer and jet instabilities are derived 
in this par t  of this report. 
wi l l  be linearized by employing the theory of linear perturbations. It is 
assumed that the atmosphere is infinite in horizontal extent, so that the 

The hydrodynamic equations for isentropic flows 
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perturbation dependent variables can be expressed as normal modes with 
respect to  the horizontal and time coordinates. The Fourier  amplitudes of 
these normal mode representations are functions of the vertical  coordinate, z .  
A set of five homogeneous, ordinary, l inear differential equations with 
nonconstant coefficients that govern the normal mode amplitudes will  be 
obtained upon substituting the normal mode representations of the dependent 
variables into the linear perturbation equations. These equations will  be 
combined to yield a second-order homogeneous differential equation in the 
Fourier  amplitude of the vertical component of the perturbation momentum 
vector. In the later portion of this report ,  the stability properties of shear  
layer and jet flows ar'e obtained by solving this equation with respect to 
certain boundary and interfacial conditions. A s  the first step, the appropriate 
boundary and interfacial conditions f o r  continuous and broken-line jet and 
shear  layer flows wil l  be presented here. 

I sent ropic Hyd rodyna m i c  Eq uat ion s 

We choose as our coordinate system a right-hand orthogonal f rame of 
reference, defined by the x, y,  and z axes. The x and y axes define a 
plane that is tangent to the earth a t  latitude 4. 
intersection of the x and y axes. The z axis is directed toward the local 
zenith. In this coordinate system the atmospheric hydrodynamic equations 
valid for isentropic flows are given by 

The point of tangency is the 

_ -  + w - -  a u  2-42 - 2 a  w + 2 Q z v  , - + u -  + v -  
a t  ax a Y  - a z  P ax Y 

- + u- av + v -  av +w--  av _ -  Lap - 2azu  +2axw 
a t  ax a Y  a z  P a Y  

- a w + w - -  a w  _ -  - - 2 a  v + 2 a  u - g  a w  + v -  aw + u -  
Z X a t  ax a Y  az  P az 

Y 

Y 
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and 

ae + w x = O  ae ae + v -  ae + u -  - 
a t  ax a Y  

In this system of equations, u, v, and w denote the x, y,  and z components 
of the velocity vector; p, p, and e represent the pressure,  density, and 
potential temperature; and 52 52 and G Z  are the x, y, and z directed 

components of the earth 's  angular velocity vector at latitude $. Since these 
equations govern inviscid, non-heat-conducting flows and phase changes are 
forbidden, the results of this report  must be viewed in that light. The 
variables p, p, and e are connected through the equation of state for  an 
ideal gas, 

x' y' 

p = RpT Y (14) 

and Poisson's equation, 

where T is the Kelvin temperature. R and C denote the specific gas 

constant and specific heat at constant pressure  for  dry air and p1 = i o00  mb. 
P 

Linearized Perturbat ion Equations 

In this section we wil l  linearize equations (9) through (15) to isolate 
the essential physics of shear  layer and jet instabilities. The equations wi l l  
be valid for  analyzing perturbations characterized by ratios of the horizontal 
to vertical length scales  much less than i o2  and frequencies less than the 
local Brunt-Vaisala frequency. 

Linearization. The known dependent variables associated with the 
basic state flows are indicated by an overbar. The combined motion of the 
jet or  shear  layer  basic flow and the superimposed perturbation may be 
represented by 
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- 
u = u + u '  

- 
v = v + v '  

w = W+W' 

where pr ime indicates a perturbation quantity. Similarly, the thermodynamic 
variables can be represented as 

p = p + p '  

e = i 7+e1  

p = ;;+PI 

T = ? ; + T '  

It is assumed that the unprimed quantities satisfy equations (9) through (15) 
and that the perturbation quantities are small enough that products of pertur- 
bation quantities appearing in the equations can be neglected in comparison with 
the first-order terms. Therefore, upon substituting equations (16) and (17) 
into equations (9) through (15) and noting that the meso- and synoptic-scale 
dependent variables (overbarred quantities) satisfy equations (9) through (15) 
i t  follows that 

- -  - -  - iw $- -.q Ai - 2Q w' + 252 v' 
p ax p ax Y Z 

Y 

- - -  L"I-+L++ - - 252 u' + 2slXW' 
P a Y  Y 

Y 
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and 

This system of equations governs the perturbation-dependent variables. The 
perturbations are llforcedly by the jet or  shear  layer flow through the coefficients 
in the equations. 
tial energies f rom the synoptic- and meso-scale flows to the small-scale 
disturbances, 

This fyforcingf' process is a conversion of kinetic and poten- 

Approximations. We intend to examine small-scale instabilities with 
typical horizontal length scales which are less than 50 km and time scales on 
the order  of 5 to 10 minutes. The instabilities are primarily generated by a 
vertical shear  of the synoptic- and meso-scale basic flows. 
length scales of these basic state flows are of the order  of 5 I O 2  to 5 I O 3  km, 
while the associated time scales are of the order  of 1/2 to 5 days. In view of 
the magnitude of these scales in comparison to the length and time scales of 
the perturbations, it is assumed that the horizontal and temporal variations of 
the basic shear  layer  o r  jet  flow can be neglected in the perturbation equations. 

The horizontal 
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Further  simplifications can be introduced by noting that synoptic and 
large meso-scale systems are quasi-horizontal hydrostatic flows , so that 

(25) 
- 
w - 0  

and 

In addition, it is often t rue  that these flows exhibit quasi-parallel motion over 
large distances in the horizontal (- 500 km) and vertical  (N  5 km). 
Accordingly, if we  orient the x-axis of the coordinate system parallel to the 
direction of the shear  layer or  jet flow, then 

(27) 
- 
v - 0  

Introducing these approximations into equations ( 18) through (22) yields 

L(jWf)  = - 2l2 az  - gp' - 2Q pv' + 2Qzpu' 
X 

and 

d8 Le1+w'- = o , 
dz 

7 

7 

Y 
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where 

- a  
a t  ax 

L = - -  a + u -  (33) 

Further simplifications can be introduced with regard to the Coriolis 
te rms  in equations (28) through (30). We may neglect the Coriolis t e rms  if 

# < < i  , 

M 

and f i  < < I  ( 3 7 )  

where 

within the braces. We may assume for atmospheric problems that 

{ }M denotes that we select the order  of magnitude of the quantity 

p f / p  - 0.01, Qz = 0.504 I O "  sec-I (@ = 45' N) , g = 9.8 m sec- 2 , 

and v' - uf - 10 m sec-I, 
(37) are of order  

so that the left-hand sides of equations (36) and 
and thus these conditions are satisfied by most 



atmospheric flows. In addition, most atmospheric flows are characterized 
by w'/u' 5 I and w'/v' 5 I, s o  that we  need only investigate the inequalities 

.$+ < < I  

P ax 

and 

<< I 

Upon introduction of the length scales 

(39) 

and estimation of the magnitude of the pressure gradient force with the 
magnitude of the buoyancy force in the vertical equation of motion in equation 
(301, so that 
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equations (38) and (39) may be written as 

L<<(+ee) L3 2azvt 

M 

and 

(44) 

We may assume for atmospheric problems that p l / p  - 0.01, 

m sec-I, 

= 0.504 sec-I (@ = '45" N)  , g = 9 .8  m sec-2, and ut - v1 - 10 
Z 

so that equations (44) and (45) yield 

Most analyses of small-scale perturbations in the absence of Coriolis forces 
predict I 5 Ll/L3 (i = I, 2 )  5 20 [ 14, 381. Accordingly, we wi l l  assume as 
a working hypothesis that equation (46) is satisfied by perturbations in shear  
layer o r  jet  flows. It wi l l  be shown a posteriori  that this assumption is valid. 
An additional condition involving the frequency of the perturbations can be 
obtained by requiring that the Coriolis forces are small  in comparison to the 
local accelerations, so that the ratio between a typical Coriolis t e rm and a 
typical acceleration t e rm must be sufficiently less than one to neglect the 
Coriolis terms. ~ h u s ,  for example, if w e  neglect 2~ pvl against a ( p u t ) / a t  
in equation (28) , we obtain the condition that Z 
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I 

Since vf/ut  - I, it follows that o >> CZ where w is a typical frequency 

of the perturbations. Thus, the frequencies of the perturbations must be very 
large compared to the rotation rate of the earth. This concludes our analysis 
of the approximations with regard to the perturbation momentum equations. 

M Z M 

Upon eliminating Tr /T  between equation (23) and equation (24 ) ,  we 
find 

where C = C - R. Substitution of equation (47) into equation (32) yields 
V P 

- - 
Lp' -2 ,e Lp' - pw'S = 0 

C P  
Y 

P 

where 

A t  this point we will invoke the Boussinesq approximation to simplify 
the mass  continuity equation and neglect Lp' in equation (31) .  The Boussinesq 
approximation has been introduced into the momentum conservation equations 
with the linearization procedure. Equations (28) through (30) without 
Coriolis te rms ,  equation (31) without Lp', and equation (48) a r e  the 
linearized forms of the Boussinesq approximated equations of motion for deep 
convection. The details of the approximation are contained in a paper by 
Dutton and Fichtl [ 391. The dependent variables are ;ut, pv' pw, p', and p'. 
The equations are suitable fo r  analyzing the stability properties of shear  
layers  and jets in which the frequencies of the perturbations are less  than or 
equal to the Brunt-Vaisala frequency, (gS)i/2, and the vertical scales of the 
perturbations can be o f the  same order  of magnitude as the scale height of the 
medium. However, these conditions are only sufficient to validate these 
equations, so that we  wi l l  relax the length scale requirement and neglect the 
pressure  perturbation t e rm in equation (48) for  the sake of mathematical 

- -  
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convenience. According to Dutton and Fichtl 1391, this simplification implies 
that the vertical scales of the perturbations a re  small  compared to the local 
scale height. 

Application of all the above-mentioned approximations to equations (28) 
through (31) and (48) yields 

L(j;u') + P"'x du = - a' 
ax 

and 

Lp' - pw's = 0 ( 54) 

The analysis of shear  layer and jet instabilities wi l l  be based upon this set  of 
differential equations. 

Normal Mode Representation 

Earlier in this report we assumed that the time and horizontal length 
scales of the perturbations a re  very small  in comparison to the associated 
scales of the unperturbed flow. This assumption permits u s  to neglect the 
temporal and horizontal variations of the unperturbed flow in the perturbation 
equations. Accordingly, we are formally treating the shear  layer or jet flow 
as being a steady-state, horizontally uniform flow, infinite in horizontal 
extent. This means that we may represent the dependent variables as normal 
mode solutions with respect to the horizontal and time coordinates. Substitu- 
tion of these normal mode representations into the simplified perturbation 
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equations will yield a set of equations that govern the vertical  variations of 
the normal mode amplitudes of the dependent variables. 

The normal mode representation of the dependent variables in the 
horizontal and time coordinates is given by the Fourier  integral 

0 0  

A 
In equation (551, $I and @ denote a dependent variable and its associated 
Fourier amplitude and K~ and ~2 denote wave numbers associated with the 
x and y axes. The frequency of the system, denoted by w, depends upon 
Ki and K 2 ,  the structure of the unperturbed flow and the associated boundary 
conditions. 

The dependent variables as represented by equation (55) are constructed 
from a complete orthogonal function set ,  so  that each Fourier  mode can be 
considered individually. Thus, upon substituting equation (55) into equations 
(50) through ( 5 4 ) ,  we find 

A -A 
iQ p1 - pwlS = 0 9 

and 

- -A -A 
i K  p u t +  D(pw') = 0 , (581 

where 
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d 

d 
dz 

D = -  

and 

- 4  

The symbols iy j, and 

and z axes. 
equations (56) and (58) yields 

denote unit vectors directed parallel --L to the x, y, 

The elimination of the horizontal divergence of p^ur between 

where 

A 
The elimination of p' between the component of equation (56) and (57) 
yields 

A 
Q2$ - iQDp' - gS$ = 0 

A 
Further elimination of p' between equations (63) and (65) then gives 
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Equation ( 66) is a homogeneous second-order - ordinary differential equation 
in the unknown, +. In this equation, u and e' are known functions of z. 
The stability analysis in the subsequent portions of this report  will be based 
upon the solution of this equation, 

Boundary and Interfacial Conditions 

Now we investigate the boundary and interfacial conditions associated 
with continuous and broken-line jet and shear  layer flows in a semi-infinite 
atmosphere. Equation (66) possesses an infinity of solutions for a given set 
of e' and u profiles; however, the solution for  a given se t  of boundary and 
interfacial conditions is unique. The general solution to this equation has two 
arbi t rary constants of integration. Upon applying the boundary and interfacial 
conditions to the general solution, these constants of integration will  be known 
to within a multiplicative constant which depends upon the initial conditions. 
Because we wil l  examine broken-line jet m d  shear ' layer flows, w e  will  obtain 
solutions to equation (66) valid for  various portions of the unperturbed flow 
and we must ensure that these solutions agree at  the interfacial surfaces 
that separate these regions. 
by two constants of integration; however, the constants of integration must be 
related because there are only tm arbi t rary constants of integration fo r  the 
complete domain of integration. Thus, for  each interface in the shear  layer 
or  jet flow, we require two interfacial conditions to relate the constants of 
integration across  the interfacial boundaries between adjacent regions of 
integration. 

The solution in each region will  be characterized 

Rigid Boundaries. We shall require the vertical  velocity and thus the 
vertical component of the perturbation momentum vector to vanish at the lower 
rigid boundary, so that 

0 0  

at a rigid boundary. Because this integral must vanish for  arbitrary x, y,  
and t, and because $ is a complete function set, it follows that 

+ = o  
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at a rigid boundary. In the subsequent analyses, we wi l l  assume that the lower 
rigid boundary is sufficiently far removed from the jet core or  shear layer, 
so  that the lower rigid boundary condition wi l l  be applied at z = - 00. 
validity of this assumption, which will  simplify the study of the permissible 
eigenstates, wi l l  be analyzed by examining a simple Kelvin-Helmholtz shear 
layer or  vortex sheet later in this report. 

The 

- .  Free Boundaries at Infinity. The upper boundary, located at infinity, 
will  be considered to be a free surface in which 
pressure is a single-valued function of position and time, we w i l l  require that 
the pressure perturbations vanish in the limit as we approach the free surface 
so that 

and E vanish. Since 

l im 

Upon taking the limit operator under the integrals, it follows that 

A 
l im p' = 0 
z-00 

This condition may be cast into a statement concerning the behavior of z) at 
infinity. If we  take the limit of equation (63) as z approaches infinity, and 
impose equation (70), we find the appropriate condition on $ is then given by 

The free boundary equation (71), as well  as the rigid boundary equation (68), 
can be applied to broken-line and continuous shear layer and jet flows. 

Interfacial Conditions. Two interfacial conditions are necessary to _ -  - 
force agreement of solutions across interfaces in broken-line shear layer and 
jet flows. One condition wi l l  be derived from the requirement that the 
component of velocity normal to the interface must be continuous across the 
interface. The other condition will  be obtained by integrating equation (66) 
across  an interface. 
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Consider a horizontal interface which is deformed by perturbations. 
The perturbations are sufficiently small  so that products of perturbation 
quantities can be neglected in comparison to first-order terms. To prevent 
infinite accelerations, we require that the component of velocity normal to 
this surface be continuous. In mathematical t e rms ,  this last statement may 
be expressed as 

where 

As(f)  = fi - fi (73) 

and the subscripts I and 2 denote evaluation at the interface from below and 
above. In equation (72), Qj is a function of x ,  y ,  z, and t and it appears 
in the equation for  the interfacial surface given by 

A function Qj that would describe the instantaneous position of the interface 
is given by 

@ ( x y y , z ,  t) = z - z - t ' ( x , y , t )  = 0 Y (75) S 

where z 

datum plane and 5' is the height of the interface relative to the unperturbed 
o r  equilibrium position. In a particular problem z is a constant. Upon 

substituting equations (75) and (16) into equation ( 72), and then applying the 
approximations (25) and (27),  we find the perturbation form of equation (72) 
is given by 

is the height of the unperturbed position of the interface above a 
S 

S 
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We may identify t f  with the vertical component of the Lagrangian displacement 
vector of a fluid particle located at x, y, and t in the interface, because, 
by definition, fluid particles can neither leave nor enter the interface. In 
short ,  the interface is a material  surface. Thus, the vertical  velocity of a 
fluid particle at the point x, y, and t in the interface is given by 

w'(x,y,  zs + t ' ,  t) = 

However, E'  is a perturbation quantity, so  that to within first order  

Substitution of equation (78) into equation (76) yields the result  

As  (s) = 0 

(77) 

(79) 

If we expand w' in the vertical about the level z = z in a Taylor series, 
then S 

However, w' and <' are perturbation quantities, so that to within first 
order  

This means we  may evaluate the left side of equation (78) at the equilibrium 
position of the interface. 

29 

I 



I 

If we represent with a Fourier  integral of the form 

0 0  

then it follows f rom equation (78) that 

A 
w1 (x,y,zs ,  t) = 

Substitution of equation (82) into equation (79) yields 

where A 

at z = z In general, w does not vanish; thus, it may be concluded from 

equation (84) that the Fourier amplitudes of the vertical component of the 
Lagrangian displacement vector are continuous across an interface. 

means that we evaluate the ffjump'f in f 1  across  the interface 
S 

S' 

A 
We may express equation (84) in te rms  of w1 in view of equation (83)  , 

so that 

However, since our fundamental differential equation is in te rms  of q, 
equation ( 6 6 ) ,  we must require 

As(%) = O 

Since 
tional to s, it follows that equation (86) can be expressed alternatively in the 
form 

must be continuous across  an interface and is inversely propor- 
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As(*) = 0 

This is our f i r s t  interfacial condition. 

Let us now concentrate on developing the second interfacial condition. 
Equation (66) may be written in the form 

I€ we integrate this expression over an infinitesimal element 
- E < z < z + E) and then pass  to the limit, E = 0 , it follows that 

( = S  S 

A (LID$ - K l $  DZ) - g K 2  
S 

In performing this integration, 

-?@- 52 As(;-') 

we have used the continuity of $;/a across  
an interface. Equation (89) may be evaluated on both sides of the interface, 
thus yielding two conditions. However, one of these conditions and equation 
(87) yield the other. Thus, we have the option of using the two conditions 
implied by equation (89), o r  one of these conditions and equation (87). 
Equation (89) is merely a statement of the continuity of pressure  across  an 
interface. 

GENERAL CONSIDERATIONS 

Before proceeding to the detailed calculations in the subsequent 
portions of this report,. it is worthwhile to examine the mathematical properties 
of the governing differential equation (66) and the associated boundary and 
interfacial conditions 

52 2 2  D $ -  [ ~ i 5 2  

z ) = O  at 

that w e r e  derived previously. This system is given by 

D2U - K 2 ( @  - n2) ]  = 0 , (66) 

z = o  Y (68) 
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As (%)= 0 Y 

and 

In the following, we will present the method for  solving this system for various 
types of broken-line flows, obtaining two theorems concerning the permissible 
number of modes this system can possess. Also ,  we will examine the conse- 
quences of two transformations of the dependent variable. These transforma- 
tions will yield three theorems that were first derived by Miles [ 311, Howard 
[ 331 , and Synge [ 371 for continuous ;'and 6 profiles. In addition, a necessary 
and sufficient condition for the existence of unstable solutions for  atmospheres 
characterized by S f 0 will be derived. It will be shown that this condition 
leads to the resul t  that all continuous flows which are statically, unstable ( S  < 0) 
everywhere a r e  dynamically unstable to small perturbations. 
implications of these theorems for  broken-line profiles will be examined. 

Finally, the 

Solutions for  Broken-Line Profi les 

The purpose of introducing broken-line ? and u profiles is to simplify 
the governing differential equation so that it can be solved with elementary 
functions. 
equation (66) are piecewise constant. The following types of profiles serve 
this purpose: 

Broken-line profiles are selected so that the coefficients in 

(I) Stacked layers in which u and e' are constants. 

(2) Stacked layers in which 6 and S are constants. 

(3 )  Stacked layers in which u is a linear function of z and 
is constant. 
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Type (I)  flows a re  special cases  of the type (3) flows. If 52 f 0, then 
equation (66 )  reduces to 

for  the type (1). and (3) profiles and 

D2?,6 - K (1-5) ?,6 = 0 

for the type (2) profiles. 

Let us  now consider a type (I), ( 2 ) ,  o r  (3 )  flow that possesses N 

interfacial surfaces and N + i layers,  where the kth interface is located at 
th 

z = z The solutions to equations (90) and (91) for  the k layer are given k’ 
bY 

q k =  A @ + B  @ ( k =  i , 2  ,..., N + l )  , k k .  k k  

where 

K E  z k 
\kk = e Y 

and 

I/ 2 
gsk 

E k 

(93) 

(94) 

(95) 

th 
In equation (951, S layer,  

and Ak and Bk are the associated constants of integration. The solutions 

and Qk are the values of S and 52 in the k k 
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as given by equations (93) and (94) are valid fo r  type (2) flows; the solutions 
for the type (I) and (3) profiles are obtained by setting ck = I. Application 

of the interfacial equations (87) and (89) to the solutions $k and $k+i at 
the interface yield 

A k M y , k + B k M i , k + A k + l  N l , k + B k + l  N2,k = o  (96) 

and 

+ B  N + A  M+ + B  M+ = o  , A k N 3 , k  k 4 ,k  k+l 1 , k  k+l 2 , k  

where 

i t- 

1 - 
'k+I ('k+' 

k k  
1 -  e (2 -) 

(97) 
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th and z and z + denote evaluation at the k interface upon approaching it k- k 
frdm below and above. In equations (98) and (99), A k  represents the velocity 

th shear  of the unperturbed flow in the k layer. 

Equations (96) and (97) represent 2N equations in 2 (N + I) variables, 
namely Ak and B (k = I, 2 ,  . . . , N + I) .  This system is underdetermined; 

however, we have two other conditions at our disposal, namely, equations (68) 
and (71), which wi l l  close the system, so  that a solution can be obtained to 
within an ar ibtrary multiplicative constant, 
lower boundary yields 

k 

Evaluation of equation (68) at the 

Elimination of A, f rom equations (96) and (97) for k = I with equation (104) 
yields 

N+ I A t  the upper boundary, the linearly independent solutions ?I, and 

for  the types ( I )  and (3 )  flows have the limiting values 
N+ I 

= o  - 
'N+I 

- CQ and l im Y 

z-CQ l im 'N+I z-CQ 

therefore, to satisfy equation (71) we must require 

= o  AN+i (107) 
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However, in the case of the type (2) flows, we  have 

- lim QN+l - 03 and l im = 0 for Re(€' ) > 0 1 
+N+ i N + I  

z-O3 z - m  

= 03 for Re(€  ) < O  1 
(108)  

'N+I N + I  
lim PN+i = 0 and l im 
z - m  z-00 

with the convergent solution as z 

N+ I 

N + i  
To be definite, w e  will  associate + 
approaches infinity; i. e., we will  exchange the symbols CP 

in equations ( 9 3 )  and (94) for  k = N + I if R e ( €  ) < 0. Thus, equation 

(107) will  be valid for  the type ( 2 )  profiles. Accordingly, for  k = N, 
equations (96) and (97) can be expressed in the form 

and Ik 
N + i  

N + I  

AN Mi, N + BN Ma, N + BN+I N2 ,  N = 0 1  

= O I  
*N N 3 , N +  BN N 4 , N f  B N + l  M+ 2 , N  

( i O C ,  

Now, equations (96) 
and (109) represent 
namely, A,, AS, . . 

and (971, for k = 2,  3, . . . , N - I ,  and equations (105) 
2 N  linear homogeneous equations in 2 N  unknowns, . , AN and B,, B,, . . . , BN+l. Since these equations 

are homogeneous, the solution can be determined to within only an arbitrary 
multiplicative constant; this constant is determined by prescribing the initial 
disturbance at t = 0. 

According to the theory of linear algebraic equations, w e  must require 
the determinant of the coefficients of the A ' s  and B's to vanish, in order  
for  the solution to be nontrivial, s o  that 
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- 
M -M- 

2 , l  1,l 

9 -N 4 , l  3 , l  

0 

0 

0 

N 
1 7  1 

I Y I  

172 

3Y2 

M+ 

M- 

N 

0 

0 

0 

0 

0 

0 

0 

0 

0 

N2 N-I 

M2 N-1 
+ 

M- 
2YN 

4 7  N 
N 

0 

0 

0 

0 

0 

0 

0 

N 
27 N 

2 ,N  
M+ 

= 0 . (110) 

Equation (110) is the characterist ic equation for  the problem and the solution 
of this equation for o wil l  yield the permissible eigenstates of the perturba- 
tions and the stability properties of the unperturbed flow. The expanded form 
of this equation can be expressed as 

2N 

where the a's are functions of the GIs and the GIs evaluated at the 
KE~(Z~-)ZI -KEI(Z~-)ZI 

interfaces, the AIS in the type (3) flows, e 7 e  7 

e 
In deriving equations (90) and (91) , it w a s  assumed that Q 
follows from equation (ill) that 

...) e -KEN+l(ZN+)ZN in the type (2) flows, and K~ and K ~ .  K E Z  (Zit-) zi 
Z 0 and thus it k 

k 2N 

k=O 
c a p  = o  
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In the type (I) and (3) flows, the a’s are independent of w and equation (112) 
is a polynomial in  w of degree 2N. Thus, it may be concluded that the 
permissible number of modes associated with the type (I) and (3) broken-line 
flows for  specified values of K~ and K~ cannot exceed 2N. 

If the basic state is isentropic, then S must vanish everywhere and e’ 
will  be continuous across  the interfacial surfaces. This means the type (2) 
flows will  reduce to type (I) flows. In addition, the characterist ic equation 
for  the type (I), (2), and (3 )  flows can be written in the form 

where the b r s  are functionsof the urs evaluated at the interfaces, K~ and K 2 ,  

and the A ’ s  in the case of the type (3 )  flows. Thus, it may be concluded that 
the permissible number of modes associated with isentropic type (I), ( 2 ) ,  and 
(3) flows for  specified values of K~ and K~ also cannot exceed 2N. 

In the type (2)  broken-line flows in which S = 0 ,  equation (112) is a 
transcendental equation in w. In addition, we have the added restriction that 

must be selected so that the solution in .the (N  + i) th the rea l  par t  of E 

layer converges as z approaches infinity. It is extremely difficult to solve 
this eigenvalue equation for  w,  and it appears that no general conclusions can 
be stated about the permissible number of modes as in the type ( I )  and (3)  
flows. 

N+ I 

The main objective of this report  is to analyze instabilities in shear  
layer and jet flows with the main emphasis upon the latter. 
task, we desire  a model that yields a characterist ic equation that is amenable 
to parametric analysis, so that it can be analyzed with relative ease for  a wide 
variety of jet and shear  flow configurations. The model best suited for  this 
purpose is a three-layer type (I) flow. The resulting eigenvalue equation is 
a fourth-order polynomial in w. Admittedly, the model is somewhat 
unrealistic since the potential temperature is constant in each layer;  never- 
theless, the system permits simulation of static instability and stability with 
rfjumpsf’ in the potential temperature across  the interfaces. In this respect,  
the type (2)  flows would be more realistic. However, to determine the 
type (2) eigenvalues w e  would have to search the complex w-plane with a 
trial and e r r o r  procedure, because of i ts  complicated transcendental nature. 

To perform this 
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In the type (3) flows, it would be possible to model jets, which are 
bounded at infinity, with a three-layer model given by 

where AI > 0 and R 2  < 0. 
a fourth-order polynomial in w. However, with type (3) flows, it is not 
possible to model strong jets having large shears  with realistic core velocities 
and still have reasonable &perturbed velocities in the extremities of the 
velocity profile. This could be remedied by splitting the lower layer into two 
layers. However, this would complicate the problem, because the character- 
ist ic equation would then be a sixth-order polynomial in w. In the case of the 
type ( I )  flows, i t  is possible to simulate high core velocities and large 
velocity shears  in the form of vortex sheets and sti l l  have reasonable velocities 
in the extremities of the profile, as well  as a simple characterist ic equation 
suitable for parametric analysis. Accordingly, later in this report  w e  will  
confine our attention to an analysis of the three-layer type (I) jet and shear  
layer  flows. Thus, by adjusting the velocities and potential temperature in 
each layer, we can model a variety of jet and shear layer flows for  a variety 
of thermal stratifications. 

The characterist ic equation for  this flow state is 

Transformation @ =C&F 

Let us suppose that Im(w) + 0 and define the function F with the 
relation 

Substitution of the transformation equation ( 115) into equations ( 66), (68), 
.(71) , (87) , and (89) yields 
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D(Q2DF) - t c 2 ( Q 2  - gS)F = 0 2 

A (gF) = 0 
S 

9 

and 

The complex conjugate F':' of F satisfies this system if we replace 52 with 
a'$. Multiplication of equation (115) by F'; and integration over the domain 
(0 5 z S m) yields 

co co co 

F'"D(Q2DF) dz - s tr2!2' IFI2 dz + s K 2  gSIFI2 dz = 0 . (121) 
0 0 0 

The first integral on the left-hand side of equation (121) may be integrated by 
parts, so  that 

a3 co 

j F':'D(Q2DF) dz = - j Q 2  )DFI2  dz + (Q2F''DF}m 
0 

0 0 

N +E {A (Q~F ' ; 'DF)}~ 
k= I S 
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The third te rm on the right-hand side of equation (122) is the contribution 
from integration across  the interfacial surfaces and (As( )}, is the l'jumpl' 

in ( ) across  the kth interface. The second t e rm on the right-hand side of 
the equation is the Riemann concomitant evaluated at the upper and lower 
boundaries. The contribution at the upper boundary vanishes because of 
equation (118) , while the contribution from the lower boundary will  vanish 
because of equation (117), so that 

k 03 N+I s F'*D(Q2DF)dz = - 2 s Q2IDFl2dz 
0 k=l z < z 

z < z  

k- I 

where z 

and z 

be partitioned into two parts so that 

(k = 1, 2, 3, . . . , N) is the height of the kth interface, z k 0 
= 0, 

- - a. The third integral on the left-hand side of equation (121) can 
N+ I 

co k 
z < z  

N+ I s ~ ~ g S J F 1 ' d z  = 2 
0 k=l z < z 

K~ gSIFI2dz 

k- I 

The f i r s t  t e rm on the right side of equation (124) is the contribution from 
integration across  each layer  of the broken-line jet o r  shear  layer  flow; the 
integration bounds do not include the end points of the intervals. The second 
t e rm on the right side of equation (124) is the contribution from integration 
across  the interfacial surfaces. In deriving equation (124) we have used the 
continuity of ZF across  the interfacial surfaces, see condition (119). 
Combination of equations (121), (123), and (124) yields 
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k z < z  k N+ 1 z < z  N+ I c 1 S2’IGI2dz-K2g 1 SIFI’da 
k=l z < z k=l z < z k- I k- I 

where 

Continuous Jets and Shear Layers. For  continuous profiles of 6 and - 
u w e  have N = 0, so that the interfacial t e rm in equation (125) vanishes 
and the summation signs can be removed from the first and second terms. 
Thus, w e  may w r i t e  equation (125) in the form 

00 03 

JQ2(GJ2dz  - K 2 g  S JFJ ’dz  = 0 
0 0 

From this result ,  we may conclude that the eigenvalue equation for  continuous 
flows wi l l  have two and only two branches in the complex w-plane. 
result  means that the eigenvalues of w occur in complex conjugate pairs  so 
that unstable and stable modes coexist. The reason for  this apparent contra- 
diction is that the diffusive effects of viscosity and heat conduction have been 
neglected. However, it is known that in the case of the Orr-Sommerfeld 
equation, the unstable solution is the physically relevant one, and the associated 
stable or  decaying mode that occurs in the inviscid l imit  can be removed by 
asymptotic expansions involving a Reynolds number and then letting the 
Reynolds number approach infinity. In view of the fact that equation ( 6 6 )  
reduces to the inviscid Orr-Sommerfeld equation for  the special case of 
S = 0, we wil l  assume that the unstable solution is the physically relevant 
one. Equation (127) enables us  to derive a necessary and sufficient condition 
for  instability and obtain bounds on the eigenvalues of w. 
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a.  A Necessary and Sufficient Condition for  Instability. Expansion of 
Q 2  in equation ( 127) yields 

where 

and 

Upon solving equation (128) for w w e  find 

The integrals Io, 11, and I2 are real  quantities, so  that it may be concluded 

from equation (132) that the necessary and sufficient condition for w to be 
complex and thus for  instability (Im(w) < 0) to exist is 

1; < I I2 
0 
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o r  

GI2 dz 
2 c a  

4 
0 

If S = 0, then inequality in equation (134) 

03 

00 

dz /GI2 dz . 
(134) 

0 

reduces to the form 

According to the Schwarz inequality, the inequality in equation (135) wil l  be 
satisfied for  all continuous distributions of u, except in the special case of u = constant, where we then have an equality. This result implies that 
isentropic atmospheres (S = 0) characterized by distributions of u(z)  that 
vary,  however slightly, are always unstable. 

Equation (134) is always satisfied for  S < 0 everywhere, and thus, 
all continuous statically unstable shear layer and jet flows are dynamically 
unstable. If S > 0 everywhere, only special distributions of u will  satisfy 
equation (134) . If S is too large locally or  globally, then inequality (134) 
will  be reversed and the unperturbed flow will be dynamically stable. On the 
other hand, if S is sufficiently small  for S > 0 ,  then the flow can be dynami- 
cally unstable. 

b. Inviscid Orr-Sommerfeld Equation. Let us  now concentrate on the 
special case S = 0 , In this case,  

In general, 52 f 0, except perhaps at selected points on the velocity profile, 
and thus, equation (136) implies that 
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This equation is the inviscid Orr-Sommerfeld equation (Rayleigh equation) 
and it can be derived directly from equations (56)  through (58 )  by setting 
S = 0 -- ab initio in equation (57). Now, equation (137) has a singularity of 
multiplicity one at SZ = 0 , while equation (66)  has a singularity of multi- 
plicity two at the same point, and because of this reduction in the multiplicity. 
of the singularity, the necessary and sufficient equation (133) is not valid for  
s = 0. 

A 
It should be noted that if S = ,O, then equation (57) implies that p' 

wil l  vanish if 52 is nontrivial. This result  implies the Eulerian density 
fluctuations, p' ,  vanish, because p' is constructed from the p' function 
set through the Fourier integral, equation (55) .  However, it should not be 
concluded that the Lagrangian density fluctuations vanish. 
point, we  wr i te  equation (54) in the form 

A 

To clarify this 

7 

where 

The quantity 

is the value of Dp associated with an isentropic atmosphere; i. e. , 
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Thus, w e  may wr i te  equation (138) as 

Now, ascending and descending fluid particles wil l  experience changes 
in density due to adiabatic expansions o r  compressions. These changes 
correspond to the Lagrangian density changes and are given by w'(Dp) 8=cons t: 

In addition to these changes, we have the density changes due to vertical 
advection which a r e  given by WID; . The net local change in density due to 
vertical motions at a point translating with the mean flow at a given level is 
equal to the Lagrangian changes minus the vertical  advection changes, so  that 
the local changes relative to the mean flow are thus given by equation (141). 
We have the following situations: 

Statically stable atmosphere: 

Statically neutral atmosphere: 

- - 
Statically unstable atmosphere: Dp < (Dp) 6=const . 

Thus, we may conclude from equation (141) that in a stable stratification the 
local density changes relative to the mean flow are positive for  ascending 
motions and negative fo r  descending motions, while the reverse  is true for  
unstable stratifications. In a neutral stratification, the local density changes 
wil l  vanish because the Lagrangian changes a r e  balanced by the vertical 
advection changes. 

Lin [40,41,42] and Foote and Lin [43] have discussed equation (137) 
in detail for  boundary layer and jet velocity profiles for K~ = 0. According 
to Squire's [44] theorem, K~ = 0 corresponds to those marginal states in 
configuration space that bound all possible unstable states. Lin and Foote 
explain that the necessary and sufficient condition for  the existence of an 
unstable mode is that D2U vanish somewhere within the fluid. In addition, 
they note that the neutral modes contiguous to the unstable modes are 
characterized by 

D2U(z ) = 0 
C 
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and 

where z is that value of z at which equation (137) has a singularity. To 

determine the critical solution, we merely solve equation (142) for  z 

calculate w with equation (143), and then determine the cri t ical  wave number 
by solving equation (137). We can then calculate the eigenvalues of w in the 
vicinity of the marginal neutral solution by expanding q9 and w in a Taylor 
se r ies  in te rms  of K:  about the marginal solution, paying proper attention to 
the solution in the vicinity of the singularities. Lipps [45,46] has used this 
technique to examine barotropic instability in the westerlies. The important 
point of this discussion is that in the case of the inviscid Orr-Sommerfeld 
equation w e  have necessary and sufficient conditions for  the instability 
associated with jets and boundary layer flows which are useful because one 
may proceed in a straightforward fashion to calculate the cri t ical  neutral 
solution. We  are not s o  fortunate in the case of barotropic instability in 
stratified fluids characterized by nonvanishing S. Equation (133) does not 
provide for  a straightforward procedure for  determining the cri t ical  solutions 
because it depends upon the solution. Thus, i t  appears that in order  to obtain 
the cri t ical  solution for stratified flows we  must examine the complete set of 
Fourier amplitudes associated with given distributions of 3 and u. 
can be extremely difficult in view of the fact that relatively simple continuous 
distributions of I? and u make equation (66) very difficult to solve. One way 
to avoid these difficulties is to employ broken-line representations of jets and 
shear  layers. 

C 

C Y  

This 

c .  Semicircle Theorem. It is possible to derive additional information 
from equation (127) by separating the real and imaginary par t s  so that 

and 

m 

i 2w ’ ( K I ~ +  w ) / G I 2  dz = 0 i r 
0 

(145) 
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where w = Im(w) and wr = Re(w). It may be concluded f rom equation 

(145) that if w.  < 0 (dynamically unstable perturbations) 
1 r 

must vanish at least once in the interval 0 2 z 5 00. This result w a s  first 
obtained by Synge [371. 

i 
then t c i i  + w 

Let us now assume w .  Z 0, so that equations (144) and (145) may be 
1 written 

, 
and 

Combination of equations (146) (1471, and (148) yields the result  that 
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If we consider media that possess positive static stability ( S  > 0) , 
equation (149) implies 

then 

2 I ( a + b ) l 2 + w :  Z [ $  ( a b ) ]  

because I G 1 and I F l 2  are positive definite. Thus, the complex wave 
frequency w for  any unstable mode, associated with S > 0, must lie inside 
the semicircle in the lower half of the complex w-plane, which has the range 
of for  diameter. This result  w a s  first obtained by Howard [33]. 

Broken-Line Profiles. The stability cr i ter ia  in equation (133) and the 
semicircle theorem do not necessarily apply to an arbi t rary broken-line flow 
because the function F does not occur in a positive definite form in the third 
te rm on the left-hand side of equation (125). In the other terms,  F and DF 
occur in absolute value forms and it is possible to f ix  the signs of the various 
t e rms  without explicitly knowing F, while this is not true for  the t e rm in 
question. However, it is possible to make this te rm vanish by restricting the 
flows to those characterized by 5 being continuous across  the interfacial 
surfaces. 

If we  require I? to be continuous across  the interfacial surfaces,  
then it follows that equations (119) and (120) can be written as 

A (F) = 0 
S 

and 

Equation (151) implies that F is continuous across  an interface if e' is 
continuous across  the interface, so that we  may conclude from equation (152) 
that 
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Accordingly, equation (125) reduces to 

k 

k=l z < z 

z < z  k N+ I z < z  N+I 

k=l z < z 
J Q22]Gl2dz - K 2 g  J S J F I 2 d z  = 0 . (154) 

k- I k- I 
c 

This equation is valid only for  those flows in which S f 0 in a t  least one 
layer. If S vanishes everywhere, then the basic state is isentropic and the 
governing differential equation is a Rayleigh equation, so  that equation (154) 
would be invalid for  the same reason the continuous counterpart w a s  invalid. 
Upon expanding Q2 in equation (154) and rearranging the te rms ,  we find 

and 

z < z  

k=l z < z 

N+I 
I' = 
0 

k- I 

k z < z  N+ I 
If = J K ~ U I G I ~  dz Y 

k=l z < z k- I 

where 

k 

k=i z < z 

z < z  N+i 
1; = J El2 dz Y 

k- I 

(157) 

If we identify the 1"s with the 1's in equation (128) ,  i t  follows that the 
stability cri terion in equation (133) is valid for  the broken-line profiles 
characterized by s being continuous across  the interfacial surfaces. Upon 
separating the real and imaginary par ts  of equation (1541, we find 
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N+ I c 
k= I 

k z < z  

- K 2 g  S J F I 2 d z  
z < z  k- I 

k r  1 z < z  

) = 0 

) 2  - w i l  JGI2dz 
z < z  k- I 

(159) 

and 

Thus, it may be concluded from equation (160) that if w .  < 0 ,  then ~~i + w 
1 r 

must vanish at least once in the interval 0 5 z 5 00, so that Synge’s theorem 
is valid for  any broken-line flow in which s is continuous across  the inter- 
faces. In addition to this theorem, it can be shown that Howard’s semicircle 
theorem is valid. The details are s imilar  to those presented ear l ie r  for  the 
continuous case. The only difference between these proofs is that the 
integration bounds in equations (159) and (160) do not contain the points 
z = zl ,  z2, . . . , z (the heights of the interfacial surfaces).  In the case 

of the continuous profiles, these points have a measure of zero,  so  that we  
can integrate across  them. 

N 

Transformation =n1’*H 

Let us now suppose that Im(w) # 0 and define a function H such 
that 

I II 
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With this transformation, equation ( 6 6 )  becomes 

and the associated boundary and interfacial conditions are given by 

A ( & )  Q l / 2  , 

and 

Upon multiplying equation (162) by H':: and integl ting over the domain 
( O Z z Z . o ) ,  wefind 

- [AS(H%DH)] - l im Q H'"DH = 0 , 
k= I k z-03 
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where 

and w e  have applied equation (163) and used the continuity of s H/S21/2 across  
the interfacial surfaces,  equation (165). 
equation (167) are the contributions,from integrating equation (162) across  
the interfacial surfaces. The fourth t e rm in equation (167) resul ts  f rom 
integrating H“’D(i2DH) by par ts ,  and if we  res t r ic t  our analysis to flows 
characterized by 

The second and third te rms  in 

then this boundary t e rm wi l l  vanish according to equation (164). 

Continuous . .  ~ Jets and Shear .Layers. In the case  of continuous unperturbe 
flows, the interfacial t e rms  in equation (167) vanish and the summation 
represented by t 
find that 

le first t e rm in this equation collapses to one te rm and we 

The imaginary par t  of equation (169) is given by 

Because w .  + 0, this result  is impossible if 
1 

1 K 2  
gS - 4 --$- (DU)’ 2 0 (everywhere in 0 5 z 5 ~ )  
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Inequality equation (171) is a sufficient condition for  stability in the sense that 
the perturbations are neutral oscillations that neither decay nor  amplify in 
time. Equation (171) reduces to Miles' [31J result  if K I  = K .  If K~ = 0, then 
equation (171) is satisfied fo r  all transverse disturbances provided that S > 0 
and the stability properties of the perturbations are independent of 6. 
can be verified by noting that u -does not occur in equation (66) and the 
associated boundary conditions if KI  = 0. 

This 

If the perturbations are dynamically unstable, then it follows from 
equation (170) that we must have 

2 

4 K 2  
gs - 2   DE)^ < o (over a finite measure in 

0 f z  Z. . )  

The condition on the static stability gS for  hydrodynamic instability is made 
more severe by letting K approach K ~ .  This means that if we  reduce the 
static stability of a flow which is hydrodynamically stable, and if we allow it to 
tend toward dynamic instability, then the first hydrodynamic instabilities will 
occur via longitudinal eddies ( K ~  = K )  . Thus, from a stability point of view, the 
relevant solutions are the longitudinal solutions, because the associated 
cri t ical  eigenstates will  bound all the unstable eigenstates in configuration 
space. 

Broken-Line Profiles. _ _  In the case of the type (I), (2), and (3) flows, 
it is not possible to eliminate the interfacial contributions that occur in 
equation (167). Thus, we cannot formally conclude, without analyzing special 
cases ,  that the resul ts  for  the continuous profiles should be valid for  the 
broken-line flows, or at least car ry  over to the broken-line case in a modified 
form,  because H does not occur in a positive definite form in the third te rm 
on the left-hand side of equation (167). However, there is one class of 
profiles for  which equations (171) and (172) are valid. These profiles are 
characterized by continuous s, E, and Du across  the interfacial surfaces 
which permits u s  to conclude from equations (165) and (166) that 

As(QDH) = 0 9 (173) 

and 

, 
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Combination of equations (173) and (174) implies that A, (H"'QDH) = 0 and 
thus it follows that the third term on the left-hand side of equation (167) 
vanishes. The continuity of e', u, and D'; across  the interfacial surfaces 
implies that 

zk; Ek [ lQL;;D2u ] 
'k - 'k k e  - 0  k k= I 

(Du)2 -K2gS dz = 0 

4 I 1  
In view of the above considerations, it follows from equation (167) that 

The imaginary par t  of equation (176) is given by 

(175) 

.( 177) 

This expression is identical to equation (170) except that the points at the 
interfacial surfaces are not included in the integration. However, at these 
points, the continuity of e ,  U, a d  Du and the continuity of ~H/Q'/', 
equation (165) , implies that 

1 K2gS - - 4 (DE)' 15212 4 
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has  a measure of zero  at the interfaces, so that there  is no contribution to the 
integration at these points and we may w r i t e  equation (177) in the form 

It is clear  that equations (171) and (172) foll 

2 (DE)' 4 K gs - dz 

w f rom this result. 

= o  . 
(178) 

Let us  now concentrate on the broken-line type ( I )  profiles. It w a s  
explained ear l ie r  that a result like equation (171) o r  equation (172) for the 
type ( I )  profiles cannot be obtained formally f rom equation (167) without 
analyzing special cases.  However, it is possible to present plausible 
arguments that lead to modified forms of equations (171) and (172) for the 
broken-line type (I)  profiles. 

Later in this report ,  i t  wi l l  be shown that the broken-line solutions are 
the long-wave approximations of the associated continuous profile solutions. 
The philosophy of how one selects a broken-line flow to represent a continuous 
flow will be discussed la ter .  However, it is worth noting that, for the bounded 
velocity profiles, one selects the extremes of the velocity profile to obtain the 
broken-line counterpart, while the potential temperature broken-line repre- 
sentation is obtained by a spatial average of the continuous s distribution in 
each layer. The broken-line approach for  solving equation (66) works best 
fo r  the long waves, because the long waves "feel" only the gross  features of 
the basic state. The solutions wi l l  tend to fail as the wavelength decreases,  
because the waves wil l  be sensitive to the details of the basic state profiles. 
Accordingly, the broken-line solutions a r e  the antitheses of the short-wave 
WKBJ solutions. 

In the broken-line limit, S and Du are not defined at the interfaces, 
so that equations (171) and (172) a r e  not formally valid. However, we must 
realize that, in layering the basic state to obtain a broken-line representation, 
we really are considering the gross features of 6 and s that occur over the 
vertical  length scale of the waves. Accordingly, if we  estimate S and Dk 
over this length scale, then i t  is possible to obtain an estimate of a sufficient 
condition for  stability f rom equation (171). 
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b 
b; 

th The type (I)  broken-line solutions of equation (66) in the k layer 
are given by 

K Z  - K Z  zl, = A  e + B k e  k k 

If we define the vertical  length scale of the wave to be 

th then the length scale in the k layer is 

(179) 

In the lowest layer,  A, = -B,, and equation (181) yields the result  

= 0, and thus the associated length scale AN+ I while in the upper layer, 
is given by 

According to equation (182) the vertical scale of the wave vanishes at the 
surface of the earth,  increases  as the distance z f rom the lower boundary 
increases,  and tends to a limiting value K-' .  In the uppermost layer,  the 
vertical  length scale is K-' everywhere. In the intermediate layers ,  

is proportional to K-' (k = 2, 3, . . . , N) . An overall estimate of the 
vertical scale for  the entire wave could be represented by 

L 
Z C I Y  k 
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where a is a positive constant. The,estimates of S and DE over this 
length scale across  an interface are given by 

- 
K e 2  - el 
a g2 + gl s N 2 -  

where the SubscriDts 1 and 2 denote evaluation below and above the interface. 
Substitution of equations (185) into equation ( 171) leads to an estimate of a 
sufficient condition for  stability in the type (I) broken-line case, namely, 

- -  
K i  - - 2  

- (u2 - ul) 2 0 (a t  all interfaces) (186) 
e2 - el 

8 a K  

The corresponding estimate of a necessary condition for  instability based on 
equation (172) is given by 

82 - e l  - K t  (ii2 - i l ) 2  < 0 (a t  a sufficient 
8 a K  number of interfaces) . 82 + e1 

If K~ = 0,  then these results imply that the stabiiity properties of the 
flow are independent of u for  pure lateral perturbations, and the flow must 
possess a sufficient number of interfaces characterized by i2 < SI to be un- 
stable. If K~ approaches infinity with K~ fixed, then the t e rm 

wi l l  grow without bound, so that equation (187) wil l  be satisfied for sufficiently 
small  wavelengths. 
broken-line flows will  tend to be unstable to perturbations with sufficiently 

Thus , w e  may tentatively conclude that all type (I) 
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small  wavelengths. It is not possible to obtain this result  f rom equations 
(171) or (172) fo r  continuous profiles, so  that the tendency toward short  wave 
instability in the broken-line flows could, in  some instances, be spurious, 
resulting from the discontinuous stratification of the basic state. However, 
this result  does not preclude the usefulness of the broken-line representations. 
From the inequality (187) , it would appear that, if we reduce the static stability 
of a broken-line flow which is hydrodynamically stable, and if we allow it to tend 
toward dynamic stability, then the f i r s t  hydrodynamic instabilities will occur 
via longitudinal eddies, as in the continuous flows. 

Later  in this report ,  it will  be shown that the necessary and sufficient 
condition for  longitudinal ( K ,  = K )  instability in, a two-layer Kelvin- 
Helmholtz vortex sheet'with the lower boundary at z = -m is given by 

This relationship is s imilar  to equation (187) fo r  K~ = K .  In fact, for  
sufficiently small  Is1 - g2 I , we have 

Accordingly, if we combine equations (187) and (189) and se t  a = 0 . 5  , then 
we obtain the result  equation (188) , s o  that out estimates of S and DL are 
valid - a posteriori. 

THREE-LAYER MODEL 

We will now examine the three-layer type ( 1) flows in detail. More 
specifically, the solution to the governing differential equation ( 6 6 )  will be 
presented and the associated dispersion or eigenvalue equation for w will  be 
determined. This equation is a fourth-degree polynomial in w . Also, we will 
examine the solutions to this eigenvalue equation and thus determine the stability 
properties of jet and shear  layer flows. 
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The Model 

In this section we wi l l  present the three-layer type (I) flow model and 
the solutions in each layer. This material  will be s imilar  to that previously 
discussed. However, at the r i sk  of repetition we  wil l  develop the solution in 
detail to demonstrate the mathematical machinery of the broken-line flows. 

We consider a broken-line flow composed of three layers. Within 
each layer we treat the unperturbed potential temperature s and velocity u 
as constants. Figure I shows a diagram of this flow configuration. The 
unperturbed velocity and potential temperature in each layer are denoted by 
u and I?. (i = I, 2,  3 ) .  i 1 

while layer 3 will  extend over the region h < z < 00. We assume that the jet 
core ,  or center of the shear  layer,  is sufficiently f a r  removed from the 
surface of the ear th  so that the lower rigid boundary condition can be applied 
a t  z = - w .  Thus, the lower layer wil l  extend over the region - m < z < -h. 
This assumption wil l  simplify the analysis of the dispersion relation. In 
addition, this assumption does not negate the major results obtained previously, 
because the theorems will be valid with the lower boundary located at z = - 00. 
Ramm and Warren [47] have used this approximation in  an analysis of 
pressure  fluctuations a t  the surface of the ear th  and found that the solution did 
not differ significantly f rom that associated with the rigid boundary located at 
z = -H, where H is the location of the surface of the earth with respect to 
the jet core (Fig. I) .  We will  examine this approximation later in this report  
with the aid of a Kelvin-Helmholtz vortex sheet. In addition to this approxima- 
tion, we will restrict our analysis to longitudinal ( K ~  = K )  perturbations. The 
calculation wi l l  then yield the critical stability s ta tes  in configuration space 
which bound all unstable states,  and thus we wil l  determine the most statically 
stable state for  a given basic state flow configuration that is hydrodynamically 
unstable. 

- 
The vertical extent of layer 2 will  be -h < z < h, 

The layer approximation implies that within each layer the governing 
differential equation (66) takes the simplified form 

The general solution of equation (190) in each layer is a linear combination 
of the functions 

KZ e and -KZ e 
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Figure I. Distributions of basic state velocity 
and potential temperature. 
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In type (i)  broken-line flows, DE vanishes in each layer,  so  that the upper 
boundary condition (71) reduces to 

l im WD$ = 0 
2 - a  

The solution that satisfies the modified boundary condition (191) and the lower 
boundary condition 2) = 0 at z = - a is given by 

$ = Ale (- 50 < z < -h) 9 (192) 
K Z  

9 (1 93) 
K Z  -K Z $ = A2e + B2e (-h < z < h) 

and 

where Ai, A,, B2, and % are constants of integration of which only one is 
arbitrary,  because of the interfacial condittons which permit u s  to join the 
solution together across  the interfaces. 

C h a ract  e r  i s  t ic Eq u a t io n 

We wil l  derive the characteristic equation of the system from equations 
( 192) through ( 194) and the interfacial conditions ( 87) and ( 89) . 

Upon applying equation (87), we find that at the lower interface 

+k/2 

Q 2  

e -k/2 e -k/2 e 
B2 = 0 A2 - Ai  - 9 

Q 2  
(195) 
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while at the upper interface we have 

Application of equation (89) at the lower interface f rom below yields the 
resul t  

-k/2 A2 - Q2kek” % = 0 , (197) 
(-mi+% R1)e -k/2 A, + Q2ke 

while application of the same condition at the 
the result  

-Q2kek” A, + Q2ke -k/2 B, + (a - 
Q 3 P 2  

upper interface from above gives 

The various quantities in equations (195) through (198) are defined by the 
following relationships: 

Q, = v +  kA, 

Q 2 =  v + k  ) 

a3 = v + b2 

k = 2 ~ h  ) 
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w2h 
u2 

v = -  Y 

e 
02 

p, = -& 

and 

The quantities R, and R2 are the Richardson numbers of the problem. 
Equations (195) through (198) constitute a set of four independent equations 
with four unknowns, namely, A,, A,, B,, and 5. It should be noted that a 
set of conditions can be obtained by applying equation (89) at the lower inter- 
face from above and at the upper interface from below. However, these 
conditions can also be obtained by combining equations (195) and (197) , and 
equations (196) and (198) , but they do not yield extra information. 

If the solution of equations (195) through (198) is to be nontrivial, 
then the determinant of the coefficients of the dependent variables must 
vanish so that 

64 



-k/2 
Pie 

522 

0 

0 

-k/2 e k/2 
-- e -- 

522 522 

-k/2 
-52 2e k/2 Q2e 

-k/2 e k/2 

522 Q 2  
-- e -- 

0 

0 

-k/2 e 

Upon expanding this determinant, we find 

(Pia; + Q; - 

- e (pia; - 52; + ~1, )  - + ~ 3 2 )  = 

w; + P252i - m2) 

-2k 
0 

which is the characterist ic equation for the system. 

It is only possible to obtain the solution to equations (195) through (198) 
to within a multiplicative constant, because these equations a r e  homogeneous. 
Thus, upon solving them for A,, B,, and B3 in te rms  of A,, we find 
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and 

B3 = a[ sinh k + PIQi cosh k - kR, sinh k 
QlQ3 

A, is an arbi t rary constant which is specified by the initial conditions. 

The eigenvalue equation for  the Kelvin-Helmholtz instability can be 
obtained as a special case of equation (2 i1 )  by setting p2 = I and R2 = 0 
and noting that in this case Q 2  = Q3 so that 

Upon solving this equation for  o we find 

W e  have written this expression in dimensional form, because the only length 
scale available is the disturbance size. 

Since must be continuous across  an interface, we may rewrite 
equation (216) in the more familiar form 

L J 
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Equation (217) was first obtained by Kelvin [ 61 for two superposed incom- 
pressible layers of fluid. The difference between his result and that for  two 
compressible layers is that in  the former,  the unperturbed density is a constant 
in each layer, while in the latter,  the densities a r e  evaluated at the interfaces. 

In most regions of the troposphere and the lower stratosphere, 
I. 05 2 p .  2 0. 95 (i = I, 2). Accordingly, in our subsequent calculations we 

wi l l  set 6.  = I (i  = I, 2) in all t e rms  that do not contain g in each of the 

embraced expressions in equation (211). The effect of this approximation 
upon the solution can be determined by examining the eigenvalues associated 
with the Kelvin-Helmholtz instability. Thus, the counterpart of equation (216) 
for pi = I is 

1 

1 

If the flow were unstable, then the wave frequency would be estimated by an 
arithmetic mean of the basic flow, rather than a density-weighted mean of the 
basic flow and the condition for instability would read 

as compared to the exact form 

Forming the ratio 

2i4 
& +  e 2  

R 
a -  - 

R ~ .  H. 
7 

we find that for pi = 0.95, R /R 
this approximation has a negligible effect upon the wave frequency and the 
critical Richardson numbers. 

= 0.974. Thus, it would appear that 
a K.H. 
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If we expand equation (211) and apply the approximation p = I 
i 

(i = I, 2) in all t e rms  that do not contain g ,  then we find that 

where 

and 

Y4 + C3Y3 + c22  + CiY + co = 0 Y 

~3 = k ( h l +  h2 + 2) Y 

I I 
2 c2 = - k2(hi + hi + 2) + k2(hl + I) (h2 + I) - 7 k(R1 + R2) 

-2k - k2(1  - hi) ( I  - h2)e Y 

+ k2RlR2 - k4(h; - I) (hi - l)e-2k 
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The analysis to be discussed later, based upon equation (222) , wil l  be per- 
formed by extracting the roots of this equation for  various jet and shear  layer 
configurations. The jets and shear layers wi l l  be simulated by varying Rl, 
R2, AI, and 1 2 .  

THE E l  GENVALUES 

We will  now consider the secular o r  characteristic equation (222) 
which relates the parameters  of the perturbations, k and v ,  to the basic 
state flow parameters,  namely, A,, A,, R,, 
of a multitude of jets and shear  layers  can be analyzed by varying the basic 
state parameters and then determining the values of k and v which satisfy 
the secular equation (222). The goal of stability calculations is to determine 
which basic state flows lead to unstable perturbations, because i t  is plausible 
that these instabilities could ultimately result in turbulence. However, this 
may not be true in every case,  because it is also possible that the instabilities 
could lead to an organized finite amplitude motion that is nonturbulent; e. g. , 
Stuart [2] and Landau and Lifshitz [48]. In either event, the Reynolds s t r e s ses  
wi l l  be important after the instability begins. 
result  of nonlinear interaction between the various components of the perturba- 
tions, a s  wel l  as between the perturbations and the basic state flow. 
analysis, we wi l l  not account for  these interactions; therefore, the results are 
valid for only the initial stages of the instability. 

and R2. The stability properties 

The Reynolds s t r e s ses  a re  the 

In our 

Without loss  of generality, we wi l l  assume k > 0. The left-hand side 
of equation (222) is a fourth-degree polynomial in v ,  
equation may be complex. The theory of equations predicts that, if complex 
eigenvalues, roots of equation (222), occur for  specified values of k, AI, h2, 
Rl, then the complex roots wi l l  appear in complex conjugate pairs. 
If the eigenvalues of v are real ,  then the solutions to equation (66) wi l l  be 
characterized by neutral ( Im(v)  = 0) oscillations that neither decay nor 
grow in time [see  equation (82)] . However, if  v is complex, then the perturba- 
tions wi l l  be either damped (Im(v) > 0) in time, or  grow temporally without 
bound (Im(v) < 0).  If Im(v) < 0, then the motion is said to be unstable. 
Clearly, 

partitioned into two subsets; one set will  contain neutrally-stable modes 
(v i  = 0) , while the other w i l l  contain the unstable and damped modes, where 

v = Re ( v )  and v. = Im(v) . The surface in configuration space characterized 

and the roots of this 

and R,, 

(vr, A,, A,, R,, R,, k)-space (configuration space) wi l l  be 

r 1 

by v. = 0 that exists contiguously to a domain characterized by v. < 0 wi l l  
1 1 
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be a stability boundary. One of the objectives of this discussion will  be to 
determine this boundary. 

Later, we will  analyze shear layer and jet instability in the context 
of the Kelvin-Helmholtz instability. Also, we will consider the stability 
properties of two types of flows: ( I )  jet flows characterized by even distribu- 
tions of A and R, and (2) shear  layer flows that possess an odd distribution 
A and an even distribution of R. The latter case was  developed by Howard 
1341 ; the former  is believed to be a new case. A general analysis of jets and 
shear layers in the contgxt of the three-layer model will  be presented. In 
this analysis, we consider flows with asymmetric and symmetric distributions 
of h and R. 

Kelvin-He1 m hol tz  L imi t  

A s  k tends to infinity, the second te rm on the left-hand side of 
equation (211) approaches zero, because of the presence of the multiplicative 

factor e-2k. Thus, for sufficiently.large k we obtain 

Since the left-hand side of this equation is a fourth-degree polynomial in v ,  
it possesses four roots for each configuration of k, A i ,  A2, R,, and R2. 
One set  of these roots must satisfy the equation 

and the other set  must satisfy 

Equations (228) and (229) correspond to characteristic equations for per- 
turbations in Kelvin-Helmholtz sheets in unbounded stratified media. 
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Upon solving equation (228) for  v we find 

while equation (229) yields the result 

where we have used the approximations pi  = I and pz = I. The pair  of 
eigenvalues given by equation (230) will  be termed the A modes and they 
depend upon the basic state flow through the f'jumpsfl in and u across  
the lower interface. The eigenvalues given by equation (231) wi l l  be termed 
the B modes and they depend upon the fljumpslf in s and u across  the upper 
interface. 

We may identify the A and B modes with perturbations which propagate 
locally at the lower and upper interfaces, respectively. 
by examining the z,b field given by equation (192) through equation (194).  Let 
us first consider the A modes. A s  k becomes large,  A,, equation (212) ,  
wil l  approach zero  because A, is proportional to the left-hand side of 
equation (228) .  In addition, B,, equation (214) , wil l  approach zero,  because 

cosh k and sinh k both approach ek'2 as k approaches infinity, so that B3 
is essentially proportional to the left-hand side of equation (228) for 
sufficiently large k. 
asymptotic relations 

This can be verified 

This means that in the case of the A modes we have the 
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where q = z/2h. The A-mode solutions decay spatially in the vertical above 

and below the lower interface at a rate proportional to e- 
kJq':' I 

, where 
.#. Thus, the A modes propagate locally in the vicinity of the lower q*" = +2' 

interface.. 

To determine the behavior of the solution in the case of the B modes as 
k approaches infinity, it is expedient to solve equations (195) through (198) 
for AI, A,, and B2 in t e rms  of Bs. Thus, we have 

Thus, for  the B modes, B2 and AI wil l  approach zero as k becomes large 
because of equation (229) , so  that the solution is asymptotically given by 

(+<..- ) . 

In this case, the solutions decay spatially in the vertical above and below the 

upper interface at a rate proportional to e . Thus, the B modes 
propagate locally in the vicinity of the upper interface. 

-k I q 'k 1 
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If v is complex, then according to equations (230) and (231) ,  w e  must 
have 

If these conditions are satisfied, then equations (230) and (231) yield a 
complex eigenvalue characterized by v. < 0.  These eigenvalues correspond 

to the dynamically unstable solutions. However, if the perturbations satisfy 
only one of these conditions, then the instability wi l l  be confined to one inter- 
face, the interface that satisfies either equation (237) o r  equation (238) .  

1 

If R, < 0 and R, < 0,  then equations (237) and (238) wil l  be satisfied 
for  all values of k; therefore, for  large k or  small  wavelengths, there wi l l  
be an unstable wave at both the upper and lower interfaces. This means that 
the short  wave solutions wi l l  always be unstable in statically unstable atmos- 
pheres. Calculations with equation (222) also showed that the small  wave 
number Fourier components are dynamically unstable in statically unstable 
atmospheres. 

The crit ical  A mode state with wave number 
unstable A modes in configuration space is given by 

kr which bounds all 

(239) 

This condition is obtained by making equation (237) an equality. 
k is the wave number of an A-mode disturbance and k > kf , 
disturbance is unstable. Similarly, the cri t ical  B-mode state with wave 
number @ which bounds all unstable B modes in configuration space is 
given by 

Thus, if 
then the 
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2R2 B modes: k: = 
(1 - 

A s  k approaches infinity, the te rms  involving k2 under the radicals 
in equations (230) and (231) will  increase faster than the linear t e rm in k. 
Thus, the eigenvalues wil l  be complex for  sufficiently large k and the 
imaginary par ts  of equations (230) and (231) will tend toward f ikl I - hi 1/2 
and f ik 1 1 - h2 1/2. This means that, as k tends toward infinity, the 
imaginary par t  of v wil l  increase without bound. Thus, f o r  inviscid flows, 
the most unstable mode is infinitesimally small. In reality, eddy viscosity 
(nonlinear interactions) and molecular viscosity would check the unbounded- 
ness of v as k approaches iniinity. 

i 

In synoptic scale jet s t reams AI, Rl and ha, R2 characterize con- 
ditions below and above the jet core,  respectively. The typical situation that 
can be found in these jets is Rl > 0,  R2 > 0, and Rl/(l - hi )2  < R d ( 1  - h 2 ) 2 ,  
so that kr < k;. This means that in the context of the Kelvin-Helmholtz 
instability the cri t ical  wavelength of the perturbations below the jet core  is 
la rger  than the cri t ical  wavelength of the perturbations above the core. If we 
identify these instabilities with clear air turbulence, then i t  might be inferred 
that the spectrum of c lear  air turbulence extends over a broader band of wave 
numbers below the jet  core. It might also be inferred that there is a greater  
probability of encountering clear  air turbulence below the core in comparison 
to conditions above the core. Recent observations of c lear  air turbulence 
[Reiter,  491 appear to support these theoretical speculations. 

The Kelvin-Helmholtz limit is valid only for sufficiently large k . If 
the wavelengths of the perturbations a r e  too large (small  k) , then we must 
consider all the te rms  in equation (222). The remainder of this discussion 
is devoted to the analysis of this equation. 

Two Special Cases 

Before proceeding to a general numerical analysis of equation ( 2 2 2 ) ,  
One case corresponds to a jet  i t  is worthwhile to analyze two special cases. 

with symmetric basic s ta te  vertical distributions of fluid velocity and static 
stability. In this case,  AI = h2 = h and R, = R2 = R. The other case 
corresponds to a shear layer characterized by an odd distribution of fluid 
velocity and an even distribution of static stability. W e  wi l l  call these flows 
the symmetric jet and the odd shear  layer. 
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Symmetric .. Jet (Ai = h2 = A, R, = R2 = R) . Without loss  of generality 
we may set A = 0, which implies the frame of reference wi l l  be moving with 
a velocity equal to that in the upper and lower layers. This has the advantage 
that u2 represents the velocity differential across  the two interfaces and thus 
the interpretation of R as a Richardson number is justified. In this case,  
equation (21 I ) becomes 

This equation is a fourth-degree polynomial in v ,  
terized by four eigenvalues for each pair of values of k and R. Accordicgly, 
one pair  of eigenvalues, which we  will t e rm the C modes, must satisfy the 
quadratic equation: 

so that this jet is charac- 

C modes: ( v +  k)2 + v2 - kR+ e ( v  + k ) 2  - v2 + kR = 0 . (242) 1 
The other pair of eigenvalues, the D modes, must satisfy the equation: 

D modes: ( v  + k)2 + v2 - kR - e-k [(v + k)2 - v2 + kR = 0. . (243) 1 
Thus, upon solving equation (242) , w e  find that the C modes a r e  given by 

while the other pair of eigenvalues, the D modes, are given by 

v = -  L ( l - e - k )  =t$(  [ k ( e - k - 1 ) + 2 R ]  .(.-.+I)) v 2  ’ 
2 

(245) 
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-k 
Since I f e > 0, it is clear that the necessary and sufficient conditions fo r  
instability to set in are given by 

C modes: R < 2 ( I  + e-k) , 

Dmodes: R <-  (1 -emk) . (247) 

The C modes are the most unstable since the cri t ical  value of R, in this case,  
is greater  than that of the D modes; i. e. , the C modes in comparison to the 
D modes wi l l  experience instability over a wider band of wave numbers for  a 
given value of R. Thus, as we increase the wave number of the disturbance, 
the C modes will f i r s t  destabilize at the wave number that first satisfies 
equation (246) and, upon further increasing the wave number, the D modes 
will  destabilize at the wave number that first satisfies equation (247) .  In view 
of these comments, equation (246) is the relevant stability criterion for this 
case. If instability sets jn, 'the waves wi l l  propagate unidirectionally with 

phase velocities - ( I + e -k) /2 and - ( I  - e-k)/2 for the C and D modes, 
respectively. 

The solution to equation (66)  for  the c,ase of the C modes is given by 

kv 11, = Ale 

v2 - (v + k)2 - kR 
v(v + k) 

-k 
11, = A1 

11, = -Ale -kv (a<.<-) . 

This can be verified by combining equation (242) with equations (212) through 
(214) and, in turn, combining the resulting relationships with equations (192) 
through (194) .  Similarly, the solution for  the D modes is given by 
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krl $ = Ale 

y2 - (v + k ) '  - kR -k 
21 -AI v (v + k) (249) 

The C modes are odd solutions, while the D modes a r e  even solutions. 

The Fourier amplitudes of the Lagrangian displacements of the inter- 
faces are related to the vertical  velocity through the relationship 

equation (83 ) .  Upon evaluating equation (250) at the lower interface from 
below and combining this relationship with the solution of the C modes valid 

in the region -m < 7 < - - 
Lagrangian displacement at the lower interface for  the C modes is given by 

equation (248) , we find that the amplitude of the 
2 ,  

Similarly, we find that at the upper interface, the amplitude of the C-mode 
Lagrangian displacement is given by 

-k/2 
A I  i A l e  

A 
The subscripts I and 2 on 5 '  denote evaluation at the lower and upper 
interfaces, respectively, and - (-1/2) and ;+(1/2) denote the density at 
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the lower and upper interfaces evaluated f rom below at the lower interface 
and from above at the upper interface. In the case of the D modes, the 
Lagrangian displacements are given by 

. . -k/2 

and 

-k/2 
(254) 

It may be concluded f rom equations (251) and (252) that the C-mode 
Lagrangian displacements at khe upper and lower interfaces are out of phase 

4 
by 180 degrees,  because ti/<; < 0 . However, it may be concluded from 
equations ( 2 5 3 ) , , ~ $ ,  (254) that the D-mode Lagrangian displacements are in 
phase because 
associated with the C and D modes. Earl ier  in this section we  concluded that 
the cri t ical  wave number of the C modes is less than that of the D modes. 
Thus, if a symmetric jet is excited by disturbances with ever-decreasing 
wavelengths, then the first instability will set in via an  asymmetric mode 
(odd C modes). Thus, the odd solutions are the most unstable solutions. 

> 0 . Figure 2 depicts the interface configurations 

The asymptotic behavior of + for large k in the case of the C modes 
is given by 

v2 - ( v +  k)2  - kR -k(l -q)  e v ( v  + k) + - AI 

+ - -Ale -b 
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i 
i 

C M O D E S  (ODD S O L U T I O N S )  

D MODES ( E V E N  S O L U T I O N S )  

Note: The dashed lines represent the equilibrium interface 
configurations and the solid lines a r e  the perturbed 
interfaces. 

Figure 2 .  Interface configurations associated with the C and D modes. 

while the D modes have the behavior 

v 2  - (v + k)2 - kR -k(l-V) $ e 
-*I V ( V +  k) 
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Now the limiting C modes should correspond to the A modes, while the limiting 
D modes should correspond to the B modes. However, upon comparing 
equation (232) with equation (255) and equation (236) with equation (256) ,  we 
find the correspondence is not exact. The difference between these resul ts  
can be explained by an examination of the limit procedures that were used to 
obtain each result. First, since % is arbi t rary in equation (236) ,  we may 
replace it with A,. In obtaining equations (232) and (236) ,  we f i r s t  obtained 
an approximate eigenvalue equation (227) and then deduced equations (228) 
and (229).  We then concluded from equations (228) ,  (212) ,  and (214) that 
A, - 0 and 3 - 0 as k -  m for the A modes, while equations (229) ,  (233) ,  
and (235) permitted us to conclude that A, - 0 and B2 - 0 as k - for 
the B modes. Now in the case of the symmetric jet  we first obtained the 
exact solutions of equations (248) and (249) with the aid of the characterist ic 
equations (244) and (245) and then took the limit of the solution as k - 00. 
In short ,  the limit procedure, discussed previously, is the reverse  of the one 
used to obtain the limiting solution fo r  the symmetric jet. It appears that we  
lose half of the limiting solution with the limit procedure discussed previously. 
The difficulty can be resolved as follows. First the A l t s  in equations (248) 
and (249) are functions of the initial conditions and the Ails  in these solutions 
a r e  different, because they are derived f rom the odd and even par ts  of the 
initial conditions. This is also true for  the limiting solutions of equations (255) 
and (256).  Now as k -  m ,  the limiting solutions of equations (255) and (256) 
differ by a multiplicative constant, K,  say,  in the domain -00 < q < 0, while 
the solutions in the domain 0 < q < 03 differ by the multiplicative constant -K. 
This means the complete solution for  large k can be constructed with the C 
modes in the domain -a < q < 0 and the D modes in the domain 0 < q < 03, 
o r  vice versa.  If the complete solution for large k is odd, even, o r  neither 
of these, the symmetry or  asymmetry properties wi l l  automatically be taken 
into account, because two constants of integration wi l l  be available for  each 
pair of modes (a C mode and a D mode) for  each k. 
solutions of equations (232) and (236) are valid for the symmetric jet, in 
addition to being valid for asymmetric basic state flows. 

This means the limiting 

Odd Shear Layer (Ai = 0, A2 = 2,  R l  = & _=_ R) . Upon setting A i  = 0, 
h2 = 2 and R, = R2 = R, equation (211) reduces to the form 

[ ( v + k ) ’ +  v 2 - k R ]  [ ( ~ + k ) ~ +  ( v + 2 k ) ’ - k R ]  
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Upon setting v = y - k, we find that equation (257) can be written as 

[ y 2 -  ( r i+r2)2 ]  [.'- o 

where 

I/ 2 

ri = - ( kR - k2e-2k - (I - e-',) (kR - k2) 
4 

and 

(259) 

The symbol y represents the complex wave frequency relative to a frame of 
reference which is translating with the basic state flow in the middle layer. 
In the sequel, a l l  considerations with regard to this shear layer w i l l  be 
referenced to this coordinate system. It should be noted that u measured 
in this relative frame of reference is an odd function. It is clear  that the 
four roots of equation (258) are all given by 

Now the following statements concerning the stability properties of the flow 
can be concluded from equation (261) : 

(i) Stability (four rea l  roots) if 
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(ii) Instability (two pairs of conjugate complex roots with nonzero 
real par ts)  if 

(iii) Instability (two pairs of conjugate pure imaginary roots) if 

-2k -2k ) 
R < k  e - ( i - e  - 

provided 

k < i l n L ( f i + i )  8 2 for  R > O  

This example w a s  constructed by Howard [34] to show that the principle 
of the exchange of stabilities is not necessarily valid for  odd profiles of u 
associated with even distributions of S or  static stability. A discussion of 
the principle of the exchange of stabilities can be found in Reference 50. The 
argument for  applying this principle is based upon the symmetry properties 
of equation (66). If w is an eigenvalue belonging to a proper solution 21, (z) 
for  assigned values of KI  and ~ 2 ,  then a::' is also an eigenvalue for  the 
same values of K~ and K~ and belongs to the eigenfunction $(z)"'. In other 
words, conjugation does not change equation (66) .  In addition, since u is an 
odd function of z and S is an even function, then -w is also an eigenvalue 
and belongs to 21,(-z). Thus, we might infer that the transition state in pass- 
ing from stability to instability should be characterized by w = 0 if it is 
unique. Howard explains that this means that neither left nor right is preferred 
as a direction of propagation of the instability, so that the wave apparently 
must stand still, unless the transition state, as well  as all other states,  occurs 
in mi r ro r  image pairs with respect to the real axis of the complex w- or  
v-plane. Thus, if an unsteady marginal state (Re(v)  f 0 and (Im(u) = 0) 
exists, it  wil l  be characterized by two unstable waves moving in opposite 
directions with the same speed. 
(261). 
predicts that the transition state C and D modes a re  characterized by 

This last alternative is predicted by equation 
This should be compared with the case of the symmetric jet which 
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F 
i 

unidirectionally propagating waves with phase velocities (I - e-k) / 2  and 

(I + e-k) /2 with respect to a frame of reference translating with the jet 
core  basic state flow. In addition, the symmetric jet instability first sets in 
via a single unstable wave (C mode) and it is only for  sufficiently large k 
that two unstable waves exist [ see  equations (246) and (247)] , while the odd shear  
layer is characterized by two unstable waves for  all unstable states in configu- 
ration space. Thus, the odd shear layer and the symmetric jet are charac- 
terized by fundamentally different destabilization phenomena, in spite of the 
fact  that the sources  of the instability are s imilar ,  namely, the shearing 
action of the unperturbed wind profile. 

The amplitudes of the Lagrangian displacements at the lower interface 
are given by 

while the Lagrangian amplitudes associated with the upper interfaces a re  
given by 

Clf sinh k +  p1!2i cosh k - kFt sinh k e 

-k/2 (266) 

Equation (265) w a s  obtained by substituting equation (192) into equation (250) 
and equation (266) w a s  obtained by combining equations (194) , (214), and 
(250). Let u s  now consider the behavior of these functions for  sufficiently 
small  k,  for  R > 0,  so  that equation (262) is satisfied. This means we 
wi l l  consider neutral motions. 

Upon expanding rl and r2 in a Taylor s e r i e s  expansion in k about 
the point k = 0, and using the definition v = y - k and equation (261), we 
find that the four eigenvalues can be expressed in the forms 
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and 

The modes associated with equations (267) 

(k-  0) . I (268) 

k3l2 + . . . 

and (268) wil l  be termed the 
E and F modes, respectively. Since we are now analyzing the neutral modes, 
it follows that v is real and > 0. Thus, the phase angle between the 
Lagrangian displacements at the upper and lower interfaces for  a given mode 
will be determined by the sign of 

T = sinh k + plQ$ cosh k - kR sinh k Y (269) 

where T is the quantity within the braces in equation (266). If T > 0, then 
the Lagrangian displacements will be in phase (phase angle equal to 0 deg) , 
while if T < 0 then the displacements wi l l  be 180 deg out of phase. Upon 
retaining only the first two t e rms  in equations (267) and (268) , we find for  
the E modes that 

while in the case of the F modes we have 

T. = (k 7 Ri/2ki/2)2 k + piRk - k2R 

If k is sufficiently small, then we need only consider the te rms  involving k2 
in equation (270) , so that in the case of the E modes T < 0 ,  because pi is 
approximately equal to unity and R > 0. This means the E modes for  R > 0 
a r e  the odd solutions and the phase angle between the Lagrangian displace- 
ments is 180 deg. In this case,  the interface configuration wi l l  be like that 
of the C modes as shown in Figure I. Similarly, if k is sufficiently small ,  
the te rm plRk in equation (271) wi l l  be an order  of magnitude greater  than 
the magnitudes of the other te rms  in the same equation, so that T > 0 in the 
case of the F modes. Thus, the F modes for  R > 0 are the even solutions, 
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the phase angle between the Lagrangian displacements will  be equal to 0 deg, 
and'the interface configuration wi l l  be like that of the D modes as shown in 
Figure 2. Calculations with equations (265) and ( 2 6 6 )  appeared to show that 
these phase relationships are true for all neutral odd shear  layer solutions. 

In the case of the symmetric jet, we found that as k increases,  the 
first unstable solution is odd and a further increase in k results in a 
destabilization of one mode of the even solutions. The first unstable solution 
in the odd shear  layer wi l l  be a linear combination of an even and an odd mode 
as we increase k and pass through the cri t ical  state. These modes propagate 
in opposite directions relative to a frame of reference translating with the basic 
velocity in the middle layer,  and the magnitude of the phase velocities of these 
modes are equal. Thus, the interaction of these modes results in a stationary 
wave instability in a f rame of reference translating with the mean flow in the 
middle layer of the three-layer model. 

A s  k increases beyond the critical wave number, the phase angle 
between the Lagrangian displacements departs from 0 deg in the F modes and 
180 deg in the E modes. The phase angles of the C and D modes a r e  equal to 
180 deg and 0 deg,respectively, for all values of k. 

General  Eigenvalue Ana lys is  

In the previous paragraph, we discussed the stability properties of two 
special cases: the symmetric jet and the odd shear layer. 
cases  proved to be both interesting and instructive; however, they do not 
exhaust the many possibilities that could exist in the atmosphere. 
the purpose of this section is to analyze the eigenvalues and thus the stability 
properties of other types of jets and shear layers. The analysis wi l l  be valid 
for  microscale shear  layers and jets imbedded in the synoptic scale vertical 
wind profile and mesoscale and synoptic scale jets and shear layers. 

These special 

Accordingly, 

Eigenvalue Diagrams. The essential features of six types of basic 
state flows to be considered are tabulated as follows: 
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Basic State Flows 

Flow Number 2b 32 El E2 

1 0.5 0 0.4 0 .2  

2 0.5 0 0.2 0.2 

3 0.5 0 0.2 0.4 

4 0.5 0.4 0 . 2  0.2 

5 0.5 0.8 0.2 0.2 

6 0.5 I. 3 0.2 0.2 

In the subsequent discussion, we wi l l  refer to these flows by number, as 
listed in the above tabulation. 

Flows i, 2, and 3 are jet flows with asymmetric velocity distributions, 

Flow 
where the velocity in layer 3 is equal to zero,  and that in layer I is equal to 
0.5 u2. 
3 is hydrostatically more stable above the jet core ,  while flow i is hydro- 
statically more stable below the jet core. 
of static stability. 
could correspond to that associated with a synoptic scale jet s t ream in which 
one would expect to find the relatively more stable fluid above the jet core in 
the stratosphere; i. e., Ri < R2, while flows I and 3 could correspond to 
meso- and micro-scale jets imbedded in a synoptic scale wind profile. Of 
course, it is also possible to associate flow 2 with meso- and micro-scale flows. 
Flows 1, 2, 3 were selected to determine the effects of the distribution of 
static stability upon jet stability. 

Flows i and 3 have asymmetric distributions of static stability. 

Flow 2 has a symmetric distribution 
The distribution of static stability associated with flow 3 

Flows 4 and 5 correspond to jet flows, while flow 6 corresponds to a 
shear  layer flow. 
associated distributions of static stability are symmetric. 
and 6 were selected to determine the effects of the distribution of velocity upon 
jet  and shear layer instability. These flows could correspond to micro- and 
me so-scale flows. 

These flows have asymmetric velocity distributions and the 
Flows 2, 4, 5, 

Figures 3 through 8 a r e  eigenvalue diagrams of perturbations that 
could occur in flows i through 6, respectively. These diagrams illustrate 
the magnitudes of the real  and imaginary parts of v calculated with equation 
(222). If the real part of v ,  denoted by v is negative, then the quantity r’ 
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Note: Both negative and positive values of v are  plotted in r 
this figure, negative values of v being indicated with r 
a minus sign. Now, the imaginary parts of v occur 
in complex conjugate pairs. Thus, the absolute value 
of v. .has been plotted and the appropriate mode numbers 

have been indicated. 
the points A and B. The vr  curve for modes I and 2 

1 
The critical eigenstates occur at 

branches at point A. To the left of this point, modes I 
and 2 a r e  neutral and I vii, I = 0, while to the right of 

this point, modes I and 2 are unstable and v 

and Iv I > 0. Similar comments can be made about 

branch point B in relation to modes 3 and 4. 

= v ri r2 

ii ,  2 

Figure 3. Eigenvalue diagram for hl = 0.5, A2 = 0, R1 = 0.4, and R2 = 0.2. 
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Figure 4. Eigenvalue diagram fo r  hi = 0.5, A2 = 0 ,  R1 = 0.2,  and 
R2 = 0 .2 .  (See Fig. 3 for explanation of the symbols. ) 
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Figure 5. Eigenvalue diagram for hi = 0.5, h2 = 0 ,  R, = 0.2, and 
R2 = 0.4. (See Fig. 3 for  explanation of the symbols. ) 
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Figure 6 .  Eigenvalue diagram for  hl = 0.5, h2 = 0.4, R, = 0.2, and 
R, = 0.2. (See Fig. 3 for  explanation of the symbols. ) 

Figure 7. Eigenvalue diagram for A i  = 0.5, A2 = 0.8, Ri = 0.2, and 
R2 = 0.2. (See Fig. 3 for explanation of the symbols. ) 

89 



10 

5 

1 

.s  - .- 
;r - .. 
L 

A 
+ I  

.10 

. O S  

. O l  
. O l  .o.s . I  .5 1 

k 
5 10 

Figure 8. Eigenvalue diagram for  hi = 0.5, A, = I. 3 ,  Ri = 0.2, and 
R, = 0.2. (See Fig. 3 for explanation of the symbols. ) 

-v 

conjugate pairs;  thus, we have plotted the magnitude of the imaginary par t  of 
v, denoted by vi, and it wi l l  be understood that both positive and negative 

values of v occur. The left side of the characterist ic equation (222) is a 

fourth-degree polynomial in v ,  so  that for  each configuration of hi, A%, 
Ri, R,, and k ,  there will  exist four modes, each with its own value of v . 
Accordingly, the modes a r e  indicated with numerical subscripts (1, 2, 3, and 
4) on vr and vi in Figures 3 through 7. In Figure 8 we  have departed from 

this notation to label the various features on the vr  curves,  so that the 

w a s  plotted. If v is complex, then the eigenvalues will  occur in complex r 

i 
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1 

f 

additional subscripts (5 and 6 )  do not imply that the number of modes exceed 
four for  any particular value of k. In discussing Figure 8, we will re fe r  to 
six modes; however, four of these modes (I, 2, 5, and 6) do not occur over 
the complete spectrum of wave numbers. 

The critical state, the neutral state contiguous to an unstable state, 
occurs at a branch point in the complex v-plane. In Figures 3 through 8, 
these critical states occur at a branch point in the (vr ,  k) -plane; e. g. , points 

A and B in Figure 3 are critical points. To the left of point A, the eigenvalues 
of v for  modes 1 and 2 are real, so that v 

v r 2  
left, vri and vr2 approach the same value. At point A,  v r i  = v r2  and 
v = 0. A s  we proceed away f rom point A toward the right, we then 

have v = v and I vii, 1 > 0, and the roots of equation (222) associated r i  r 2  
with modes 1 and 2 occur in complex conjugate pairs.  
unstable, while the other is damped in time. Similar comments can be made 
about branch point B in relation to modes 3 and 4. 
1 and 2 (branch point A)  and 3 and 4 (branch point B) a r e  points on a stability 
boundary in configuration space. In each case, the growth rate (v.) increases 

rapidly as the wave number increases for k > k:’ , where k denotes the 
wave number associated with a stability boundary. Branch point A is the 
relevant point on the stability boundary because it corresponds to the mode 
with the smallest  wave number or largest  wavelength which is neutrally 
stable. In the situations considered in Figures 3 and 4, the marginal wave- 
length is approximately equal to 24d, while in Figure 5 it is approximately 
equal to 12d, where d = 2h. If we interpret  d to be the vertical  halfwidth of 
a jet, then the marginal wavelength for  d = I km is equal to 24 km for  the 
situations considered in Figures 3 and 4, and 12 km for  the case considered 
in Figure 5. 

and vi2 vanish and v and il r i  
are the eigenvalues of modes 1 and 2. A s  we approach point A f rom the 

= v 
ii i2 

Thus, one mode is 

The branch points of modes 

1 

If v < 0,  then the solution to equation (66) is proportional to r 
e (kX- I 
values of x with a wave speed equal to Iv 1k-I. Similarly, if v > 0, then r r 
the solution is proportional to e i(kX+vrt) which corresponds to a wave that 
propagates toward decreasing values of x with a wave speed also equal to 

I vr I k-I. 

I t, , which corresponds to a wave that propagates toward increasing 
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Figures 3 through 8 appear to show that, as k approaches zero, the 
eigenvalues behave as follows: 

v = v  - k  (k-  0 )  ri, 2 

and 

v = v  N k112 
r 3 , 4  (273) 

The precise asymptotic behavior can be deduced f rom equation (211) , namely, 

-2k behaves like where we have set pi = pz = i. A s  k approaches zero, e 
I - 2k , so that for sufficiently small  k we may cast  equation (274) into the 

form 

+ k(Q$ - 52;)  (a; - 523) 2 0 

In modes I and 2, v behaves like k as k -  0. This means 
rl, 2 

a1, Q2, and Q3 a r e  asymptotically proportional to k, so  that the second 
and third te rms  on the left-hand side of equation (275) a r e  at least one order 
of magnitude greater than the remaining terms. Thus, we may conclude that 
the asymptotic behavior of the eigenvalues associated with modes I and 2 a r e  
given by 
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where the positive and negative signs are associated with modes I and 2,  
respectively. Upon dividing equation (276) by k, we  find that the wave 
velocity or phase velocity has the asymptotic behavior 

R1R2 
C p l , 2  *( R1+ R2) (k-  0) (277) 

where c 

aimensionless velocity in the middle layer of the three-layer model is equal 
to unity. Thus, i t  may be concluded from equation (277) that mode I wil l  
propagate upstream, while mode 2 will  propagate downstream with a velocity 
equal in magnitude and opposite in sign to mode I with respect to a frame of 
reference attached to the basic state flow in the middle layer. This wi l l  be 
t rue  for both jets and shear  layers. 

is the phase velocity measured in units of u2. The basic state 
P 

In the case of modes 3 and 4, v behaves like k1/2 as  k -  0. 

This means that i l l ,  !22, and il3 wil l  approach v as k -  0. Thus, the 
last three te rms  in  equation (275) will asymptotically vanish and the first  and 
second terms in the same equation wi l l  be of order k2, 
will  be of order k3. Thus, the first two terms in equation (275) a re  the 
significant te rms ,  so  that we have 

r3,4 

while the third te rm 

We may conclude from equation (278) that 

because v 2  is nontrivial. The associated phase velocity is given by 

We may conclude from equation (280) that c - f cb as  k -  0. 
P3,4 
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For the two-layer Kelvin-Helmholtz model, it may be concluded f rom 
equation (230) or  equation (231) that 

V N i (5) 'I2 k1I2 (k-  0) 
K. H. Y 

where R denotes R, or R2. It has been common practice in meteorology 
to consider the region below the synoptic scale jet s t reams as a Kelvin- 
Helmholtz shear layer,  so that R = Rl in equation (281) .  Upon forming the 
ratio of equations (279) and (281) we find 

In synoptic scale je ts  R2 2Rl ;  thus, it may be concluded that the three-layer 
model predicts phase velocities for  small  k which are greater than those 
predicted by the two-layer model by a factor of at least  i. 4. The result  is 
also t rue for two-layer model estimates of v above the jet core. It might 
be concluded that if we accept the three-layer model as being more realistic 
than the two-layer one, then static stability conditions above the jet core  do 
affc 2 t  wave propagation below the jet core  and vice versa.  

A t  this point in 
velocity of the waves. 

the discussion it is worthwhile to introduce the group 
The group velocity, in units of i2 , is given by 

and is equal to the slope of the v curve in a ( v  k) -plane. 

the wave energy of a wave packet with wave numbers between 
r r' If c > 0 , then 

g 
k and k + dk 

wil l  propagate toward decreasing values of x, while c < 0 corresponds 

to wave energy propagation toward increasing values of x. The coordinates 
in Figures 3 through 8 are l n ( v  I and In k; thus it is desirable to wr i te  

equation (283) in the form 

g 

r 
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a Ivrl 

lcgl = lcpl a l n k  > 

where the sign of c must be determined with the aid of equation (283). 
g 

The asymptotic behavior of the group velocity for modes I and 2 is 
given by 

where the positive and negative signs a r e  associated with modes i and 2, 
respectively. Similarly, the asymptotic behavior for modes 3 and 4 is 
given by 

where the positive and negative signs are  associated with modes 3 and 4, 
respectively. Thus, it may be concluded from equations (277) and (285) that 
the phase and group velocities a r e  asymptotically equal as k approaches zero 
for  modes I and 2. In modes 3 and 4, equations (280) and (286) permit u s  
to conclude that the group velocity is one-half the phase velocity. 

Let us  now concentrate on the behavior of the eigenvalues a s  k 
approaches infinity. The asymptotic behavior of the eigenvalues can be 

obtained from equations (230) and (231). A s  k approaches infinity, the 
te rms  under the radicals that involve hl and h2 wi l l  dominate the te rms  
that contain Rl and .R2, respectively, s o  that 

where h denotes AI or  A2. Thus, the eigenvalues will be complex for 
sufficiently large k. An examination of Figures 3 through 8 will  show that 
equation (287) is the cor rec t  asymptotic behavior for large k. 
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The quantity 11 - hl is a measure of the basic state velocity shear 
across  the lower interface if A = Ai or  the upper interface if h = hz, viz., 
I I - hi I = I (E2 - Ei) /E2 I ( i  = I, 3) .  Thus, we may conclude from equation 

(287)  that the growth rate of the perturbations will increase in  absolute value 
as the basic state shear  increases. If h = I, then equation (287)  predicts 
that v. is asymptotically equal to zero. This is an incorrect result. In this 

case, the cor rec t  asymptotic relation is given by 
1 

where R denotes R1 or R2 . Relation ( 2 8 8 )  is an obvious consequence of the 
Kelvin-Helmholtz limit; see equations ( 2 3 0 )  and (231) .  If R 2 0 , then the 
eigenvalues given by equation ( 2 8 8 )  are real, and the basic state flow is 
neutral to small  perturbations. However, if R < 0 , then the eigenvalues are 
complex, and the absolute values of the growth rates increase as the static 
stability decreases.  

The quantity ( I  + h ) / 2  is equal to the dimensionless average velocity 
between layers  i and 2 if h = AI or layers  2 and 3 if X = h2, viz., 
(i  + h . ) / 2  = (u. + u 2 ) / 2 u 2  (i = 1, 3 ) .  The phase and group velocities associated 

with equation ( 2 8 7 )  are given by 
1 1 

while the phase and group velocities associated with equation (288)  are given 
by 

where 

0 i f R Z O  

i if R > O  
61 = (  

96 



It w a s  shown previously that for  sufficiently large k, the modes associated 
with the eigenvalue equations (230) and (231) propagate locally at the lower 
and upper interfaces, respectively. Equation (289) predicts that the pertur- 
bations at the lower and upper interfaces propagate their phase and energy 
with speeds equal to the average speeds between layers I and 2 and layers  2 
and 3, respectively. The direction of propagation with respect to the basic 
state flow in the middle layer of the three-layer model is. downstream if 
I + h > 0, or upstream if I + h < 0, while A = -1 corresponds to a standing 
wave perturbation. 
associated with modes 3 and 4 and modes I and 2 propagate at the lower and 
upper interfaces, respectively, while the reverse  is true for  the modes in 
Figure 7. In Figure 8, the short  wave Fourier components associated with 
modes 4 and 6 and modes 3 and 5 propagate at the upper and lower interfaces, 
respectively. 

In Figures 3 through 6, the short  wave Fourier components 

The modes associated with equation (290) are unstable i f  R < 0 and 
neutral if R 2 0 , the equation (290) predicts that the perturbations propagate 
their phase and energy locally a t  the appropriate interface (R, and Rz corres-  
pond to the lower and upper interfaces) with velocities equal to the basic flow. 
If R > 0 , then each interface w i l l  be characterized by two modes that propagate 
both their phase and energy in opposite directions, relative to a frame of ref-  
erence translating with a speed equal to iz . 

Let us now concentrate on the regions of the eigenvalue diagrams in 
which k is neither very small  nor extremely large. In most of the cases  in 
Figures 3 through 8, these regions occur in the domain 0 .05  < k < 5. In the 
preceding paragraphs, we w e r e  able to analyze the behavior of the eigenvalues 
for  sufficiently large and sufficiently small  k with the aid of asymptotic 
expansions in the neighborhood of k = 0 and k = m. The asymptotic 
behavior w a s  obtained by examining the behavior of the various te rms  in 
equation (211) as k approaches zero and infinity. We  found that certain 
t e rms  vanished or increased faster than other terms.  
neglect certain t e rms  and res t r ic t  the analysis to a few important te rms  and 
thus simplify the analysis considerably. However, if k is neither small  nor 
large,all the te rms  in equation (211) are of the same order  of magnitude, so 
that all the te rms  must be retained. Now the left-hand side of equation (211) 
is a fourth-order polynomial in v and all odd and even powers of v between 
zero  and four are present. In principle, it is possible to factor equation (211) 
and thus obtain expressions for  the roots as functions of k, AI, A t ,  R,, and 
R2. However, f rom a practical point of view, it is virtually impossible, 

This permitted us to 
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except in a few special cases,  to extract the roots of equation (211) and express 
them as functions of k, AI, A t ,  Rl, and R2 without resorting to the use of 
numerical methods. The eigenvalues in Figures 3 through 8 were obtained 
from equation (211) by using standard numerical methods; e. g., Hartree 151 J .  

lVri ' A s  k increases away from k = 0.01, in Figures 3 through 7, 

and I vr2 I increase faster and slower than k, respectively, so that the 

absolute values of the phase and group velocities a r e  increasing functions of 
k for mode I and decreasing functions of k for mode 2. The signs of these 
velocities a r e  negative, so that the phase and energy are propagated downstream 
with respect to the basic state flow in the middle layer. To the left in the 
immediate vicinity of the branch point associated with modes I and 2 there 
exists a point on the Iv 1 curve characterized by r 2  

a in i v r 2 i  
= o  a In k 

and thus c = 0. To the left of this point c < 0, while to the right c > 0. 

A s  we approach the branch point we find 
g g g 

so  that the critical state is characterized by two modes with the same phase 
velocity which is less than zero. However, the group velocities a r e  infinite, 
but opposite in sign. This result is also valid fo r  all the other branch points 
in Figures 3 through 8. To the right of the branch point, v = v < 0 and 

v = -v A s  k increases away from the branch point, I vr 1 increases 

slower than k, s o  that the phase and group speeds a r e  decreasing functions 
of k; however, the rates of decrease of these functions approach zero as k 
approaches infinity, and c and c approach constant values, 

Pi92 8192 
equation (289). In the immediate vicinity of the branch point, 

a rapidly increasing function of k and tends toward infinity as k approaches 
infinity, equation (287), s o  that the most unstable state is associated with 
k = 00. 

ri r 2  

ii i2' 

lvil,21 is 
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Let us  now concentrate on modes 3 and 4 in Figures 3 through 7. A s  k 
and r3' increases away from k = 0.01, 

v > 0, and vr3 < lvr4 I .  In the vicinity of k = 0.3, a point exists 

on the v curve characterized by i3v /8k = 0. To the left of this point, 

c 

1 vr4 I increases faster than v 

< 0, v r4 r 3  

r 3  r 3  
> 0, so that the energy is propagated upstream with respect to the basic E3 

state flow in the middle layer, while to the right c < 0, so that the energy 
83 

is propagated downstream. In both cases, the phase velocity c is positive, 

and thus the phase is propagated upstream. In mode 4 in the vicinity of the 
maximum of v the phase and energy is propagated downstream. A s  k 

continues to increase, v 

k = 0.5. In this region, the associated group velocity of mode 3 is extremely 
large and positive, while the phase velocity vanishes at  the wave number 

P3 

r3'  
experiences a sign change in the vicinity of r 3  

- ~ 

associated with vr3 = 0. The behavior of and for 

k > I is qualitatively the same as the corresponding parameters of modes I 
and 2. 

In Figure 8, the configuration of the eigenvalues is similar to those in 
Figures 3 through 7,  except in the neighborhood of k = I. 0 where the eigen- 
values show multiple branching. For  the cases shown in Figures 3 through 7, 
we found that unstable modes existed for all wave numbers greater than some 
critical value; thus, i t  would appear that the critical wave number k'" is a 
single-valued function of A,, hZ, R,, and R2. However, Figure 8 shows that 
the critical wave number is a multivalued function of A,, h2, R,, and Rz. 

denote the wave numbers of the branch points associated 
with modes 1 and 2, 5 and 6, and 3 and 5, respectively, then we have neutral 
modes if k 2 while we have instability if  k: < k < k: 
or  k i  < k. We wi l l  pursue this point later in this discussion. Goldstein 1161 
obtained somewhat similar results in considering the stability properties of 
the broken-line flow given by 

If k f ,  ki:, and k$ 

or kf 5 k 5 k$ , 
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where p and u are positive constants. 
0 

A s  explained earlier in this report  Miles 1311 and Howard [33] have 
shown that, for  continuous basic state flows, the complex wave frequency w 
for  any unstable mode associated with S > 0 must occur within the semicircle 
which has  the range of 
that 

for diameter in the lower half of the w-plane, so  

2 [ w r + ~  I ( a +  b ) ]  2 (9) Y 

(293) 

where a and b a r e  the upper and lower bounds on K ~ G .  However, for  
broken-line flows, it w a s  possible only-to prove that equation (293) is valid 
for  those flows in which e is continuous across  the interfacial surfaces. In 
addition to equation (293) , Miles 1311 has also shown that, for statically 
stable ( S  > 0) continuous basic state flows, the cri t ical  eigenstates a r e  
characterized by 

The eigenvalues given by the asymptotic relationship (287) satisfy equation 
(293) . In addition, numerical calculations with the resul ts  in Figures 3 
through 8 show that cri t ical  state and unstable eigenvalues satisfy equations 
(294) and (293) , respectively. Thus, in view of these conditions, it would 
appear that the eigenvalues of the three-layer model behave like the ones from 
the continuous counterpart. 

Absolute Stability Boundaries. In the previous paragraph, we presented 
the eigenvalues associated with six types of basic state flows. We determined 
the asymptotic behavior of the eigenvalues for both large and small  values of 
k. We also analyzed the eigenvalues for intermediate values of k. In our 
analysis, we found that there exists a cri t ical  wave number k* such that if 
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k Sk', the solutions are neutral oscillations. 
k* < k < w ,  then the solutions are unstable, except possibly for a small  band 
of wave numbers, contained within the domain k* < k < 00, in which the 
solutions are neutral oscillations. Thus, for example, for flows I through 5, 
w e  found that the absolute stability boundary was characterized by one critical 
wave number in each case,  while for  flow 6 the absolute stability boundary w a s  
characterized by three critical wave numbers. 
associated with an absolute stability boundary a r e  functions of hi, 12, Ri, and 
Rz. The purpose of this discussion is to show the behavior of these functions. 

On the other hand, if  

The critical wave numbers 

a. Homentropic Flows. In the following paragraphs, we  will  discuss 
jet and shear layer instability in a homentropic atmosphere (Ri = R2 = 0). 
The characteristic equation for  homentropic flows can be obtained from equation 
(211) by setting Ri = Rz = 0 and pi = pz = I, so that 

= o  (295) 

We will  examine this equation in the context of three special cases,  namely, 
the symmetric jet ( A l  = h2 = 0) , the Kelvin-Helmholtz vortex sheet 
(hi = 0, h2 = I), and the odd shear layer (hi = 0, h2 = 2) .  

The eigenvalues associated with the homentropic symmetric jet can be 
obtained from equations (244) and (245) by setting R = 0, so that one pair of 
eigenvalues is given by 

while the other pair is given by 

(e-'+ I) (e-k - I )  

We may conclude from these equations that the eigenvalues a re  complex for 

all values of k in the domain 0 < k 5 00 because e -1 < 0. Thus, the 
symmetric jet is unstable to all disturbances with wave numbers in the domain 
0 < k S w .  This means the stability boundary is given by k" = 0. 

-k 
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A s  k approaches zero,  the eigenvalues ( 296) asymptotically behave 
like, 

and the asymptotic behavior of equation (297) is given by 

Lord Rayleigh, cf. Drazin and Howard [ 521 , has termed the modes of dis- 
turbance associated with equations (298) and (299) as varicosities and 
sinuousities, respectively. The varicosities are traveling wave disturbances 
that propagate with a velocity equal to that in the jet  core. The phase velocity 
of the sinuousities tends to zero as k approaches zero,  so  that these' 
instabilities to within first-order in k a r e  temporally nonoscillatory amplify- 
ing waves. 

The characteris tic equation (295) for  the Kelvin-Helmholtz vortex 
sheet is given by 

In this case,  the broken-line flow is characterized by one interfacial surface, 
s o  that the eigenvalue equation should be a quadratic equation in v. It can 
be shown that ( v  + k) 
thus, the eigenvalues are given by 

is a superfluous multiplicative factor in equation (300) ; 

It may be concluded from this equation that we  have instability for  all wave 
numbers in the domain 0 < k Sea as is true for  the symmetric jet, and the 
stability boundary is given by k" = 0. These disturbances propagate down- 
s t ream with the average velocity in  the shear  layer. 
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The eigenvalues for  the odd shear layer can be obtained from equation 
(261) by setting R = 0 in equations (259) and (260), so that 

The quantity under the braces is real  for sufficiently small  k, while the first 
te rm under the braces will be pure imaginary and the second real  for sufficiently 
large k , so that it may be concluded that the homentropic odd shear layer is 
unstable to all disturbances with wave numbers in the interval 0 < k S w  and 
the stability boundary is given by p' = 0. 
four eigenvalues implied by equation (302) is given by 

The asymptotic behavior of the 

and 

The modes of disturbance associated with equation (303) "feel" the shear  
layer a s  a Kelvin-Helmholtz vortex sheet [see equation ( 3 0 l ) ]  . The phase 
velocity of these disturbances is equal to the basic state velocity in the middle 
layer and the disturbances propagate downstream. The disturbances associated 
with equation (304) a r e  identical to Rayleigh's varicosities in the symmetric 
jet [see equation (298) 1 . 

The shear  layer flows are more unstable than the symmetric jet with 
respect to small  wave number disturbances. This fact can be verified by 
noting that the Kelvin-Helmholtz vortex sheet and the odd shear layer have 
modes of disturbance with growth rates proportional to k for small  values of 
k, while the growth rates associated with the symmetric jet are proportional 
to k312. The odd shear  layer also has one mode of disturbance that possesses 
a gr0wt.h rate proportional to k312. A s  k approaches infinity, the growth 
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rates in all  three cases  asymptotically approach -k/2, so that the stability 
properties of these flows are  asymptotically equivalent as k approaches 
infinity. 

In view of the above results, it would appear that homentropic jet and 
shear layer flows a r e  unstable to a l l  disturbances with wave numbers in the 
interval 0 < k S a. Drazin and Howard [ 521 have analyzed'the stability 
properties of continuous jet and shear layer flows with regard to small  wave 
number perturbations. They obtained eigenvalue equations in te rms  of 
integrals in which the integrands were functions of the basic state velocity 
and density distributions and the characteristic value v. In their analysis, 
they considered homentropic flows, and the results presented in this section 
a r e  consistent with their results. Accordingly, it would appear that, in the 
context of long wave disturbances, the broken-line profiles a r e  behaving like 
continuous ones. 

Finally, the asymptotic behaviors of the eigenvalues given by equations 
(276) and (279) do not agree with the results in this section for the case 
R, = R2 = 0. This means that equations (276) and (279) a re  not uniformly 
valid as R1 and R2 approach zero. However, equations (276) and (279) 
and the results in this section show that the introduction of static stability 
into the system tends to promote stability in the low wave number Fourier 
components of the perturbations. In the section that follows it will  be shown 
that the static stability must be introduced into the system at both interfaces 
to promote dynamic stability at low wave numbers. 

b. Statically Stable Flows. In this section, we will analyze statically 
stable jet and shear layer flows. The analysis will  be in the form of a para- 
metric analysis of the eigenvalue equation (222). It will  be shown that, for 
certain values of AI, A2, R1, and R,, the absolute stability boundaries 
behave like those of the Kelvin-Helmholtz two-layer model. However, it will  
also be shown that a large class of basic state flows exist which do not 
exhibit stability properties like those of a Kelvin-Helmholtz vortex sheet. 

The critical wave number is a function of AI, h2, R,, and R,. To 
depict this function, we must construct a ser ies  of graphs. In each of these 
graphs, k'k is plotted against a selected basic state parameter,  while the 
other parameters a r e  held fixed. To perform this task we could use one o r  
all of four possible types of plots, viz. , versus h2 for fixed values of 
AI, Rl, and R2, k"' versus R2 for fixed values of hi, h2, and R1, etc. 
However, the fact that the eigenvalue equation (222) possesses certain 
symmetry properties permits u s  to reduce the required number of figures 

k"' 
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by one-half. 
hi, h2, and Ri, R2. The reason for this result can be traced to the symmetric 
way the basic state parameters  occur in equation (211) with respect to 
if we use the approximation in which we set pi and p2 equal to unity in all 
te rms  that do not contain g. For  example, a plot of k* versus A2 fo r  fixed 
values of hi, R,, and R2 can also be used as a plot of k':' versus Ai for 
fixed values of h2, Ri, and R2 if we interchange Ai and h2, and Ri and 
Rz; similarly, a plot of k:: versus R, can be used as a plot of k*: versus R2. In 
this section, we will  consider two types of'plots of the cri t ical  conditions, namely, 
k:: versus A2 and k:: versus Rz for the appropriate fixed basic state variables. 

This equation is invariant to an interchange of the parameters  

Figures 9 through 12 are plots of k:: versus Az for h2 2 0 , and 
Figures 13 through 16 are the corresponding plots of k:: versus -Az for 
h2 < 0 , respectively. In these figures, h2 < I and h2 2 1 correspond to 
jet  and shear  layer flows, respectively. The regions associated with the 
unstable and neutral solutions a r e  labelled in the figures. The boundaries 
( the curves) that separate these regions represent neutral mode configurations 
Thus, for example, in Figure 9, Az = 0 . 2  implies that a l l  perturbations with 
k 5 0 . 4  a r e  neutral oscillations, while those perturbations that have k > 0.4  
a r e  

0 1.0 2.0 3.0 
1 2  

Note: The regions associated with the unstable and neutral 
solutions are indicated in the figure. 
curve ABC is predicted by the two-layer Kelvin- 
Helmholtz theory, while the shaded region of unstable 
solutions is unique to the three-layer model. 

The upper dashed 

Figure 9. k': versus A2 fo r  hi = 0.5, Ri = 0.2, and R2 = 0.2. 
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0 1.0 2.0 
1 2  

I I 1 1  1 1 I ~ _ _  L- 1 1 1 1  O !  1 
0 1.0 2.0 2 )  

1 2  

versus AI for h2 = 0.5,  R, = 0.2,  and R2 = 0.4. Figure 10. k':' 
(See Fig. 9 for an explanation of the curves.  ) 

2 D  
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Figure 12. k* versus h2 for  A, = 0.5, R, = 0.4, and R2 = 0.2. 
(See Fig. 9 for an explanation of the curves. ) 

1.6 

1 2  

t.* 

0.8 

0.4 

0 

U N S T A B L E  

0 

Note: The regions associated with the unstable and neutral 
solutions are indicated in the figure. 
boundary falls below the Kelvin-Helmholtz estimate of the 
stability curve (Fig. 18). The region of neutral 
solutions contained within the dashed curves lies above 
the Kelvin-Helmholtz critical curve. 

The solid stability 

Figure 13. k': versus -A2 for  A, = 0.5, Ri = 0.2 ,  and R2 = 0.2.  
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Figure 14. k" versus -A2 for hi = 0.5, Ri = 0.2,  and R2 = 0.4. 
(See Fig. 13 for an explanation of the curves. ) 

Figure 15. k"' 
(See Fig. 13 for an explanation of the curves. ) 

versus -A2 for A i  = 0.5, Ri = 0.2 ,  and R2 = 0.6. 
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Figure 16. k": versus -A2 for Ai = 0.5, R, = 0.4, and R2 = 0 . 2 .  
(See Fig. 13 for  an explanation of the curves.) 

In each figure, a region of neutral solutions, bounded by the dashed 
curve, exists within the unstable region above the solid stability curves. Thus, 
for  example, in Figure 9, h2 = I. 2 implies that the solutions with wave 
numbers in the intervals 0 5 k 5 1.25 and 1.45 2 k 5 I. 58 a r e  neutral 
oscillations; otherwise, the solutions are unstable. 
is associated with flows that have eigenvalue diagrams like that of flow 6 in 
the preceding section (Fig. 8). 

This extra neutral region 

Approximate stability boundaries for  the three-layer model can be 
constructed from the two-layer Kelvin-Helmholtz theory. The two-layer 
estimates of the critical wave numbers associated with the lower interface 
are given by 
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while the two-layer cri t ical  wave numbers associated with conditions at the 
upper interface are given by 

[see  equations (239) and (240) 3 .' The two-layer solutions that have k > k r  
the lower interface and k > k; at the upper interface are unstable. Earl ier ,  
we found that certain types of three-layer flows have perturbations characterized 
by two branch points (Figs. 3 through 7) , while certain other types of flows 
have perturbations characterized by four-branch points (Fig. 8).  The two- 
branch point flows have one absolute stability boundary, and the four-branch 
point flows have three absolute stability boundaries. The remaining branch 
point in each case does not correspond to an absolute stability boundary 
because it exists within a band of wave numbers associated with an unstable 
mode of disturbance, and for purposes of discussion, w e  wi l l  t e rm these points 
the unstable branch points. However, it is possible to have flows that .do not 
possess unstable branch points. The odd shear  layer is an example of this 
type of flow. The crit ical  wave numbers associated with the absolute stability 
boundaries of the three-layer flows can be estimated by selecting the least of 
the two Kelvin-Helmholtz estimates given by equations (305) and (306). We 
select  the smaller  of the two values because the other wave number exists 
within a band of unstable solutions and thus corresponds to an estimate of the 
critical wave number associated with a three-layer unstable branch point. 
Thus, if k; > k:, then g' is the two-layer estimate of the cri t ical  wave 
number associated with the three-layer counterpart, while kf is an estimate 
of the associated unstable branch point and vice versa.  

at 

Two-layer estimates of the three-layer stability boundaries in Figures 
9 through I1  and 13 through 15 are given in Figures 17 and 18, respectively. 
Except for  a very small  portion of the stability boundary in the vicinity of the 
point A, the three-layer stability boundaries in Figures 9 through I1  f a l l  below 
the two-layer estimates in Figure 17. However, only the solid stability 
boundaries in Figures 13 through 15 fa l l  below the two-layer estimates in 
Figure 18. From the point of view of the solid-three-layer stability curves,  
it might be concluded that the three-layer flows are more unstable than the 
Kelvin-Helmholtz flows with respect to the long wave modes of disturbance. 
The two-layer estimates depart from the upper dashed curves,  labelled ABC, 
in Figures 9 through I1 by no more than 7 percent. However, the two-layer 
estimates are greater than the three-layer values by approximately 15 percent 
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Note: The curves denoted by the various values of R2 w e r e  
calculated with the Kelvin-Helmholtz cri t ical  wave number 
equation k'k = 2R2/ ( I  - h2) 2 ,  while the straight line w a s  
calculated with the equation k"' = 2RJ (I  - AI) '. 
solid portions of these curves represent the two-layer 
model estimates of the stability boundaries associated 
with the three-layer model. 

The 

Figure 17. k" versus  h2 estimated from the two-layer theory 
for  h i = 0 . 5 ,  R l = 0 . 2 ,  a n d R 2 = 0 . 2 ,  0.4, 0.6. 

at the peak of the solid k'" curve, 40 percent at h2 = 0, and 50 percent at 
h2 = 3 . 0  in Figures 9 through 11. In Figures 13 through 15, the two-layer 
estimates are greater than the three-layer values of the solid stability 
boundary by approximately 50 percent at h2 = -1.0 and 30 percent at 
A2 = -3 .0.  Thus, the three-layer stability cri terion differs significantly f rom 
the Kelvin-Helmholtz criterion. However, the most significant difference 
between the two theories is the number of branch points associated with the 
absolute stability boundaries in each case. In the case of the Kelvin-Helmholtz 
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Note: The curves denoted by the various values of R2 w e r e  
calculated with the Kelvin-Helmholtz cri t ical  wave 
number equation k"' = 2Rz/ (1 - h2) '. 

Figure 18. k k  versus -A2 estimated from the two-layer theory 
for  h l = 0 . 5 ,  R l = 0 . 2 ,  and R 2 = 0 . 2 ,  0.4., 0.6. 

theory, all perturbations with wave numbers greater than some crit ical  value 
are unstable, so that the unstable solutions occur in a semi-infinite band of 
wave numbers. The three-layer theory predicts that certain types of basic 
state flows have unstable perturbations that occur in semi-infinite bands of 
wave numbers as in the Kelvin-Helmholtz flows, while certain other flows 
possess unstable solutions in both semi-infinite and finite bands of wave 
numbers. 

The introduction of a second interface into a broken-line shear layer 
produces a band of unstable solutions within the two-layer neutral region for  
certain values of AI, A2, R,, and R,. These bands of unstable solutions, 
located in the shaded regions in Figures 9 through 11, appear to be associated 
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primarily with shear  flows. On the other hand, certain three-layer jets 
possess neutral solutions within the unstable regions above the solid stability 
curves in Figures 13 through 15,and these neutral regions also lie above the 
two-layer estimates of the solid stability curves. 

It is noteworthy that the solid stability boundaries in Figures 9 through 
11 f a l l  below the Kelvin-Helmholtz estimate at h2 = I. 0. The basic state 
flow associated'with this point has no velocity differential across  the upper 
interface, and thus, the velocity field is identical to that of the Kelvin- 
Helmholtz shear  layer. However, the three-layer flow possesses a positive 
static stability at both the upper and lower interfaces. 
Figures 9 through I1 and Figure 17 imply that the introduction of static 
stability above 'or below the Kelvin-Helmholtz vortex sheet leads to a broaden- 
ing of the spectrum of unstable perturbations and thus promotes instability in 
the long wave Fourier components. This destabilization is generated by a 
so r t  of resonance phenomenon. Perturbations are generated by the basic state 
vorticity at the shearing interface. Because of the inherent coupling between 
the two interfaces, a gravity wave motion is induced at the shear  free inter- 
face, and these waves tend to enhance the perturbations at the shearing 
interface. V. Bjerknes and Hb'iland [13,14] have examined a s imilar  
phenomenon in a two-layer system bounded by lower and upper rigid surfaces. 
Their system consisted of two isothermal layers  of fluid in which the basic 
state velocities took on constant but different values in each layer. 
w a s  characterized by a positive static stability because of the isothermal 
condition in each layer. The "jumps" in potential temperature across  the 
lower and upper interfaces in the three-layer model are analogous to the 
static stabilities in the model of Bjerknes and HGiland; however, the velocity 
distributions are somewhat different. Nevertheless , some comparisons can 
be made between the two models. These investigators found that the existence 
of an internal static stability has a destabilizing effect insofar as it promotes 
instability in some of the long wave Fourier components. However, Bjerknes 
also found that dynamic stabilization occurs in the perturbations that have 
wave numbers near  the critical wave number predicted by the two-layer 
Kelvin-Helmholtz theory (two layers  with constant but different values of 
density and velocity in each layer).  
by the three-layer model. Ear l ie r  in this section, w e  found that the upper 
dashed curves, labelled ABC in Figures 9 through 11, w e r e  within a few 
percent of the stability boundaries predicted by the two-layer theory. Thus,  
the neutral solutions in the region bounded by the dashed curves in Figures 9 
through 11 are analogous to the stabilized waves of Bjerknes. 

The results in 

Each layer 

This type of stabilization is also predicted 
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At this point, it is worthwhile to mention the work of Goldstein [I61 and 
Taylor C151. Goldstein and Taylor analyzed the dynamic stability properties 
of a finite layer of fluid in which the density w a s  constant and the velocity 
distribution w a s  linear in z. This layer of fluid w a s  sandwiched between two 
semi-infinite layers  of fluid in which the basic state density and velocity had 
constant but different values in each layer. The resulting'velocity distribution 
w a s  a piecewise continuous odd distribution, and the associated density profile 
was an odd discontinuous function. These distributions are given by equations 
(291) and (292). Taylor examined a s imilar  case;  however, in his  model he 
permitted the distribution of density to be other than odd. Goldstein's shear  
layer  is a special case of Taylor's model. Goldstein and Taylor found that 
their odd shear  layer is characterized by two absolute stability boundaries 
and the unstable perturbations satisfy the condition 

k 

l + e  I - e  
-i 

-k < J + 1 <  -k 

where 

, (307) 

(T is the density differential across  the lower and upper interfaces, u(h) is 
the basic state velocity at the upper interface and -E(-h) = u(h) , and po is 
the density in the middle layer. 

If we replace the layers  of constant density in the Goldstein-Taylor 
model with layers of constant potential temperature,  then a calculation would 
show that the instability cri terion is also given by equation (307) ; however, 
in this case,  J is given by 

To obtain this cri terion, one must assume that pi and p2 can be se t  equal to 
unity in all te rms  that do not contain g. 
our analysis of the three-layer model. 

This assumption is consistent with 
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Howard's odd shear  layer  should be the three-layer model analogue of 
the Goldstein-Taylor shear  layer. However, it wi l l  be shown that this is not 
the case. In Figure 9, the point h2 = I. 5 corresponds to an odd shear  layer 
flow. In the paragraph "Two Special Cases,  I t  we set hi = 0 and h2 = 2 so 
that the velocity differential across each interface w a s  equal to unity. In 
Figure 9, the corresponding parameters  are hi = 0.5 and A2 = I. 5, and the 
velocity differentials across  the interfaces are equal to 0.5. The odd shear  
layer stability criterion, which was presented earlier, can be cast into a 
criterion for  the odd shear  layer in Figure 9 by multiplying both sides of 
equation (262) by 1/4, so that the condition for  instability is given by 

If this condition is satisfied, then the odd shear  layer is characterized by two 
unstable modes of disturbance and both modes have the same critical wave 
number. In Figure 9, the solid stability boundary is tangent to the lower 
dashed stability curve at h2 = I. 5, 
modes of disturbance lie on the dashed curve A B  and k" = I. 54. This value 
of the cri t ical  wave number can be calculated with equation (310) by making 
this expression an equality and setting R, = R2 = 0.2 . 

and thus the stability boundaries for  both 

The parameters  of the odd shear layer can be related to the modified 
Goldstein-Taylor parameter equation (309) , if  w e  assume the velocity differen- 
tial between the center of the middle layer and the upper o r  lower interface of 
the Goldstein-Taylor model corresponds to the velocity differential across  the 
upper and lower interfaces in the Howard model. Thus, Goldstein's parameter 
in t e rms  of three-layer model parameters is given by 

If in this expression, we set h2 = I. 5, Rl = R2 = 0.2, and hl = 0.5, which 
is the configuration of Howard's flow in Figure 9, then J = 0.4, where we 
have set p2 = I. Equation (307) predicts that for  J = 0.4, the unstable 
perturbations of the Goldstein-Taylor model occur in the interval of wave 
numbers 0.77 < k < 1. 66. 
to the interval of wave numbers associated with the region within the dashed 

This interval of wave numbers is almost identical 
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curves in Figure 9 at h2 = I. 5. In other words, the three-layer odd shear flow 
predicts that neutral modes occur in the region that is predicted to be unstable 
according to the Goldstein-Taylor model. Thus, it would appear that the two 
models are inconsistent. Actually, the models are not inconsistent, because 
these models are not analogues of the same continuous flow configuration. 

Miles [32] has examined the dynamic stability properties of the basic 
state flow given by 

(-3 U(z) = u tanh 
00 

where 6 is a characteristic length scale of the basic state flow, - - 
= -u ( -m)  = u ( ~ ) ,  and r is a fixed parameter for any particular flow. 

In the context of Miles' analysis, the local Richardson number is given by 
uOO 

where 

By varying r, one can simulate many flows; however, the local 
Richardson number and the velocity profile are even and odd functions of z 
for  all values of r. If r = I ,  then 

J (z) = 3 J s i n h 2  m 



i 

This flow corresponds to the case examined by Garcia (cf. Miles [32] ) . If 
r > I, then J (z) < 0 in a layer of fluid symmetrically disposed about the 

point z = 0. If r < -1/2, then J (z) < 0 for  ( z  I > Iz': 1 , where z'" 
satisfies the equation 

m 

m 

(I - r) cosh2 (s) + 3r sinh2 (G) = 0 (317) 

The profiles associated with the values of r in the interval -1/2 < r < I have 
positive definite values of J (z) for  all values of z. A s  r increases away 

from r = -1/2, J (0) decreases f rom a value of 3J/2 at r = -1/2 to J/4 

at r = 3/4. Miles restricted his analysis to values of r in the interval 
-1/2 2 r < I. 

m 

m 

J (z) and u(z)  are even and odd functions of z and, in this light, m 
Miles' flow configurations are s imilar  to the Howard and Goldstein-Taylor 
configurations. However, in the Howard and Goldstein-Taylor flows, the 
density or potential temperature distributions a re  identical and the wind pro- 
files a r e  different. In Miles' flow configuration, the velocity profiles a r e  
identical for  all values of r, while the density profiles a re  different. 

Miles found that the solutions to his problem a re  the Heun polynomials, 
and for  each polynomial solution of degree n, he found that the critical value 
of J is functionally given by 

J = J ( k , n , r ) ,  n =  0, 2 ,  4, ... (318) 

For first mode (n = 0) solutions, Miles found that J ( k ,  0, r) is a single- 
valued function of k if r 5 0.895, while J ( k ,  0, r) can be a double-valued 
function of k for certain values of k if r > 0.895. These single- and 
double-valued functions qualitatively correspond to the stability boundaries 
of the Howard and Goldstein-Taylor shear  layer flows , respectively. 

Based upon the small-k approximate theory of Drazin and Howard [ 521, 
Miles found that for  n = 0, the approximate expression 
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J = k- 2 (i-zr+, 2 r 2 )  ( + ) 2 + o  [(+)3] 
(319) 

adequately describes the behavior of the single-valued stability boundaries 
for  small  k. Upon expressing equation (262) as an equality and expanding the 
right side of this equation in a Taylor series about the point k = 0, we find 

R = k - 4k2 + O(k3) (320) 

This expression is valid for those flows characterized by hi = 0 and h2 = 2.0. 
If we make the following correspondences between Howard's shear  layer and 
Miles' flow, 

6 - 

then R/2 is the analogue of Miles' 

1 ,  r 
J. The first t e rm in equation (319) is in 

agreement with first t e rm in equation (320) ; however, f o r  the second terms to 
agree w e  require 

3 & d r  
2 r =  

Miles restricted his analysis to values of r in the interval -1/2 5 r < I, and 
the values of r given by equation (322) fall outside this interval. Thus, the 
models agree only to within the f i r s t  t e rms  of the series equations (319) and 
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(320). The important point here  is that the three-layer model and Miles' 
flow are in agreement for  sufficiently small  k, 
of the three-layer model have continuous counterparts. 

so  that the stability boundaries 

Miles' results for the double-valued stability boundaries a r e  extremely 
involved and too lengthy to present in this report. Nevertheless, some of 
the important results can be stated here. Miles' results seem to show that 
for r > 0.895 that J(k ,  0, r) is a single-valued function of k if k < I, 
while J(k,  0, r) is a double-valued function of k if k 2 I. The Goldstein- 
Taylor stability boundary is single-valued for k < I. 35 and double-valued 
for k 2 I. 35; see equation (307). 
is valid for the single-valued portion of the stability boundary for r > 0.895. 
The single-valued portion of the Goldstein-Taylor stability boundary is given 

The approximate expression equation (319) 

by 

If we make the following correspondences between the Goldstein-Taylor shear 
flow and Miles' flow, 

6 

u, 

c) h 

I '  G(h) = -u(-h) 

\ 
(324) 

then the Goldstein-Taylor J is an analogue of Miles' J. Upon expanding the 
right side of equation (323) into a Taylor ser ies  about the point k = 0, we 
find that 

2 J = --+(+) k + O ( @ )  
2 (325) 
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The first-order terms in equations (325) and (319) are in agreement,and the 
second-order t e rms  will agree if r = 0.303. However, this value of r is 
outside the interval 0.895 < r < I. Thus, the Goldstein-Taylor model and 
Miles' model are consistent only for  sufficiently small  k. 

Based upon the above comparisons, we may conclude that both the 
Howard model and the Goldstein-Taylor model yield results that are consistent 
with continuous flows fo r  sufficiently small  k. Since Howard's model is a 
special case of the three-layer model and yields resul ts  consistent with Miles' 
continuous model, we might also infer that the stability boundaries of three- 
layer flows other than the odd shear  layer correspond to the stability boundaries 
of continuous flows. 

In the vicinity of the point of tangency (A2 = I. 5) of the solid and 
dashed stability curves in Figure 9, the shear  flow is characterized by 
anomalous instability regions (shaded areas). 
with these anomalous regions have mixed velocity profiles; i. e., they are 
neither odd nor even. However, the static stability distribution is even. 
Figures 10 and I1  a r e  also characterized by anomalous instability regions, 
but the point of tangency in each figure occurs to the right of the point h2 = I. 5. 
This shift in the point of tangency probably resul ts  f rom the asymmetry in the 
distribution of static stability. In Figure I O ,  R, = 0.2 and R, = 0.4, and 
in Figure 11, R, = 0.2 and R2 = 0.6. The anomalous regions in Figures 9 
through I1 appear to be somewhat similar to the band of unstable solutions in 
the Goldstein-Taylor model. However, the similarity is only apparent. In 
the Goldstein-Taylor model, the instability zone in configuration space is 
characterized by two unstable modes of disturbance. Taylor explained that 
the unstable range of relative velocity, u (h) - u(-h) , is very narrow near 
that for which a backward-moving wave on the upper interface moves with 
the same speed as a forward-moving wave on the lower interface. Taylor 
explains further that these waves interact to produce a s o r t  of resonance 
phenomenon, with the net result being dynamic instability. This instability 
mechanism is qualitatively the same as that of the odd shear  layer. This 
mechanism requires two modes of instability; i. e, the eigenvalue equation 
possesses four complex roots, two of which have negative real par ts ,  so that 
two modes of instability exist. The unstable shaded regions in Figures 9 
through ii are characterized by only one unstable mode of disturbance; thus, 
the instability mechanism is not a resonance phenomenon. An example of the 
eigenvalues associated with these anomalous regions is given in Figure 8. 
The segment of the real eigenvalue curve denoted by -v 

the real par t  of the anomalous eigenvalues fo r  the basic state flow configuration 

The shear  flows associated 

corresponds to rl, 2 
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i 

given in the caption of that figure. We have not indicated the associated 
imaginary par ts  because they are less than 0.01. 
is that modes 3 and 4 in the anomalous range of wave numbers have pure real  
eigenvalues, so  that the anomalous region is indeed characterized by only one 
mode of instability. 
of a type of Kelvin-Helmholtz instability produced by a global interaction of the 
shear  flow as opposed to a local interaction. 
examine the mathematical properties of the solid stability boundaries of these 
regions. 

The important point here 

The instabilities in these anomalous regions are the result 

To clarify this point, let us 

The eigenvalue equation (274) can be expressed in the form 

-e -2k (nl - Q2, + kR,) (a: - a; + kR2) s2Z2 = 0 

Let u s  provisionally neglect the second and third te rms  on the left side of this 
equation, so that 

Upon solving this equation for v ,  we find that 

and the condition for instability is thus given by 
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The critical state eigenvalues are given by 

Upon substituting v 

equation (326) ,  it is easily verified by a manual calculation that the second and 
third t e rms  in equation (326) a r e  an order  of magnitude smaller  than the first 
t e r m  in the same equation; thus, our initial assumption is valid - a posteriori. 

and k'" as defined by equations (329) and (330) into 
C 

The values of the critical wave numbers given by equation (329) are 
within a few percent of the exact cri t ical  wave numbers associated with the 
solid stability curves that bound the anomalous instability regions in Figures 
9 through 11. In addition, the approximate cri t ical  eigenfrequency given by 
equation (330) yields the exact value associated with the branch point of 
modes I and 2 in Figure 8 to within 1/2 of I percent. Thus, we  can interpret  
k"' , as given by equation (329) , as being the approximate form of the solid 
stability boundaries associated with the anomalous regions in Figures 9 through 
11. However, the eigenvalues given by equation (328) are valid only in the 
immediate vicinity of the solid stability boundaries. 

The approximate analytical form of the dashed stability boundaries 
associated with the anomalous regions in Figures 9 through 11 a r e  elusive. 
An analysis of the eigenvalue equation (274) appears to show that an approxi- 
mate form of this stability boundary cannot be obtained without including 
fourth-order t e r m s  in I/ . Unfortunately, the author was not able to extract  
f rom equation ( 274) an approximate analytical expression for these stabillty 
boundaries. 

The quantity on the left side of the equality in equation (329) can be 
interpreted as a gross Richardson number of the shear  flow. The quantity 
h2 - AI is the velocity differential between layers  I and 2 of the three-layer 
mode1,and the quantities hi - I and h2 - I are the velocity differentials 
across  the lower and upper interfaces, respectively. Thus, we might think 
of the instabilities near  the solid stability boundaries as being the result of 
both the gross  velocity differential h2 - hi and the interaction between the 
local velocity differentials at the lower and upper interfaces. 

Let u s  now consider the order of events as we increase the wave 
number away from the point k = 0 for  values of Ri, R,, hi, and h2 

122 



associated with the anomalous instability regions. A s  k increases f rom 
k = 0 the first instability wi l l  occur for  that wave number which satisfies 
equation (329) .  
tion. A s -  k increases, the wavelength becomes shorter until a critical value 
associated with the upper bound of the anomalous region is attained and the 
waves become neutral. This critical wave number is associated with a 
perturbation that is too short to accomplish the energy conversion from the 
mean flow to the perturbation, so that the stability properties tend to be 
controlled by the local conditions within the shear layer. A s  k increases, 
the waves tend toward instability, and instability wi l l  se t  in for that Fourier 
component that satisfies one of the approximate equations (237) and (238) .  
If Ri(1 - < R2(1 - h2) -2 ,  then the instability wi l l  s e t  in via the Kelvin- 
Helmholtz instability at the lower interface, while the converse wi l l  be t rue 
if Ri (I - hi) -2 > R2 (I - h2) -2. 

This instability is produced by the total shear layer configura- 

A s  h2 approaches infinity, k" is a single-valued function of A2 and 
approaches zero  (Figs. 9 through 12) for h2 > 0 and fixed values of hi. 
This means that the spectrum of unstable Fourier components broadens as 
the strength of the vortex sheet at the upper interface intensifies, a result we 
should expect. However, it is noteworthy that as h2 approaches infinity the 
three-layer k"' curve l ies below the Kelvin-Helmholtz curve based upon the 
local conditions a t  the upper interface. Thus, we do not obtain the Kelvin- 
Helmholtz instability criterion in a local context as h2 approaches infinity, 
because as k"' approaches zero, the wavelength of the critical perturbation 
becomes large, so that the critical perturbation is affected by the gross 
features rather than the local features of the shear  layer flow, and thus, the 
instability is not controlled locally as for the short wave instabilities. 

The jet flows appear to have a similar behavior as  -A2 approaches 
infinity. A s  -A2 approaches infinity, the extensions of the dashed curves 
for h2 < -3 .0  in Figures 13 through 16 intersect a t  finite values of -A2, 
and for larger  values of -A2 past these intersection points, k':' is a single- 
valued function of -Az. This single-valued portion of the jet flow stability 
boundary qualitatively behaves like the associated shear layer stability boundary 
for sufficiently large Ih2 I .  

We can think of the anomalous regions in  Figures 13 through 16 
(regions contained within dashed stability curves) a s  also being the result  of 
a global interaction of the basic state flow. However, in this case, the 
interaction promotes Stability in the region that is predicted to be unstable 
according to the Kelvin-Helmholtz theory. This result  might be explained 
by examining the distribution of the basic state vorticity. For  the jet flows 
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(hi < I), the basic state vorticity vectors above and below the jet core  have 
opposite signs, while in the shear  layer flows (hi 2 I), the basic state 
vorticity vectors at the interfaces have the same signs. Thus, in the case 
of the shear  flows, the vorticity vectors enhance each other, while in the jet 
case, the vorticity vectors act in opposite directions and each tends to oppose 
the instability the other tends to promote. 

Figures 9 through 11 and 13 through 15 show that as R2 increases,  
the solid stability boundaries move toward larger values of k"' and the 
anomalous unstable and neutral zones shift toward larger values of ha. The 
percentage shift of the solid stability boundaries toward larger values of k' 
is small  in the vicinity of Ai = 1 and extremely large for large values of ' 

/ha I. Thus, for  example, upon increasing R2 from 0.2 to 0.4 for  R, = 0.2 
(Figs. 9, 10, 13, and 14), the values of k "  associated with the solid stability 
boundaries increase by a few percent near A i  = I and by approximately 100 
percent at /hZ / = 3.0.  Figures 9, 12, 13, and 16 show that an increase in 
R, also tends to shift the solid stability boundaries toward larger values of 
k::: . However, the percentage shift is extremely large in the vicinity of 
hi = I (on the order  of 100 percent) and relatively small  fo r  Jhl 1 >> I (a 
few percent near Jhl I = 3 . 0 ) .  This means a local increase in the static 
stability in a shear  layer o r  jet flow at the interface with the largest  velocity 
differential promotes stability. However, an increase in the static stability 
at the interface with the smallest  basic state velocity differential also has a 
stabilizing effect, but the magnitude of the effect is small  compared to the 
former;  this is a reasonable result. 

Figures 9 through 11 and 13 through 15 show that for  a given set of 
values Rl, R2, I I - hi I ,  and 1 I - h2 1 ,  the shear layer flow configuration 
will  have the smallest  value of k associated with the solid stability boundaries. 
This means that the shear  layer flows a r e  more unstable to long-wave per- 
turbations. The shear  layer flows are more unstable because the basic state 
vorticity vectors have the same sign, and thus, the velocity differential at one 
interface reinforces the instability at the other interface and vice versa.  Fo r  
the jet flows, the velocity differential at one interface tends to cancel the 
instability at the other interface and vice versa.  

Figures 19  through 22 are stability diagrams that depict the cri t ical  
wave number as a function of R2 for  fixed values of Ri, hi, The 
three-layer stability boundaries are indicated by the solid curves. In Figures 
19  through 21, the unstable region f o r  a given value of R1 is the entire region 
above the appropriate curve exclusive of the stability boundary; e. g., in 
Figure 19 at Ri = 0.2 and R2 = 1.0, all perturbations characterized by 
k > 0.25 a r e  unstable and all perturbations characterized by k 50 .25  are 
neutral. Figure 22 indicates the neutral and unstable regions. 

and hz. 
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Note: The neutral solutions have wave numbers in the interval 
0 5 k 5 k" ; otherwise, the solutions a re  unstable; e. g. , 
at R2 = I. 0 and R, = 0.4 the neutral solutions have 
wave numbers in the interval 0 5 k 5 0.6. The cri t ical  
wave numbers associated with a two-layer Kelvin- 
Helmholtz vortex sheet for  conditions at the upper 
interface are indicated by the dashed line. 
layer estimates of the critical wave numbers associated 
with conditions at the lower interface a r e  given by the 
values within parentheses. 

The two- 

Figure 19. k' versus  Rz for various values of Ri and hi = 0 
and A2 = 0.5. 

Figures 19 and 21 correspond to asymmetric velocity distributions 
characterized by the maximum shear  being at the lower and upper interfaces, 
respectively, while Figure 20 corresponds to a symmetric velocity distribution. 
The diagrams show that for  sufficiently small  values of R,, for  fixed values 
of R,, hi and h2, k" varies  almost linearly with R,. However, for 
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Figure 20. k"' versus R2 fo r  various values of Rl and hi = 0.5 
and h2 = 0.5. (See Fig. 1 9  for an explanation of the curves. ) 

k* 

Figure 21. k': versus R2 for  various values of Ri and AI = 0.5  
and h2 = 0. (See Fig. 19 for  an explanation of the curves.) 
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Note: The regions associated with unstable and neutral solutions 
are indicated in the figure. 
associated with the two-layer Kelvin-Helmholtz theory for 
conditions in the upper interface are indicated by the dashed 
line. The two-layer estimate of the cri t ical  wave number 
for  conditions at the lower interface is 1.6. 

The crit ical  wave numbers 

Figure 22. k"' versus R2 for R, = 0.2, hi = I. 5, 1 2  = 0.  

sufficiently large values of R2, k"' approaches a constant value. The 
approximate linear dependence of @ upon R2 for  sufficiently small  values 
of R2 means that the instability of the system is primarily controlled by the 
upper interface. However, by stabilizing the fluid from above, the instability, 
and thus k"' , tends to be controlled by the lower interface which corresponds 
to k:* tending toward a constant as R, approaches infinity. 

The k g  curves that correspond to the Kelvin-Helmholtz criteria for 
conditions at the upper interface are indicated by the dashed lines in Figures 
19 through 22, whi le  the Kelvin-Helmholtz critical wave numbers fo r  conditions 
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a t  the lower interface a r e  indicated within parentheses for each (k4 , R2) -curve. 
The Kelvin-Helmholtz estimate of the critical wave number for conditions at 
the lower interface in Figure 22 is equal to I. 6. These two-layer values of 
k* can be used to construct an estimate of the k‘:: configuration associated 
with the three-layer flows. The procedure is similar to the one used previously 
with regard to the (k;’ , A,) diagrams. 

It is clear f rom Figures 19 through 21 that, for prescribed values of 
hi,  A,, and R,, g’ does not approach the Kelvin-Helmholtz result in the 
limit as R2 approaches infinity, but rather approaches a value of k“ that is 
less  than the Kelvin-Helmholtz result. In fact, the critical wave number is 
less  than the Kelvin-Helmholtz result for all nonzero values of R, and R,. 
In the event R, and/or R2 vanish, k wi l l  vanish, which is identical to the 
Kelvin-Helmholtz result. This result appears to verify our ear l ier  findings 
that homentropic flows a r e  unstable to all perturbations. In addition, this 
result  also shows that the static stability must be introduced into the system 
at both interfaces to promote dynamic stability at low wave numbers. 

In Figures 19 through 21, the largest  departures of k ”  from the 
Kelvin-HeImhoItz cri teria occur in the vicinity of the bend of the (k* , R2) - 
curves. The departures a re  on the order of 60 percent for  R1 = 0.025 and 
25 percent for R, = 0. I. 

Figure 22 is a stability diagram of a shear  layer flow (A1 = I. 5, 
h2 = 0).  The shaded areas  in this diagram correspond to the anomalous 
unstable regions that can be found in a (k;’, h2) diagram (Figs. 9 through 11). 
The anomalous neutral and unstable regions in (k‘;’ , R2) diagrams occur for 
the same reasons they occur in the (k’;’,hz) diagrams and thus require no 
further discussion. 

Previously, we found that in a (k‘:’,h,) diagram, the jet flows are  
characterized by anomalous regions in which the solutions a re  predicted to 
be neutral in a three-layer context within a domain in configuration space that 
is predicted to be unstable according to the two-layer theory (Figs. 13 through 
15). Similar regions also occur in certain (k‘“ , R2) diagrams. Although an 
example of this type of diagram has not been presented in this report, 
preliminary calculations appear to indicate that these anomalous regions a r e  
closed areas above the Kelvin-Helmholtz curve, as in the (k’:, A2) diagrams. 
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JET STREAM INSTABILITIES 

In this discussion, we analyze the generation of instabilities in the 
vicinity of the synoptic scale jet s t reams.  The analysis is based on the 
three-layer model and an empirical model of the jet s t ream derived by 
Endlich and McLean [ 531. In this analysis, we calculate, the horizontal 
profiles of hi, h2, Ri, and R2 associated with the Endlich and McLean 
jet  s t ream, and determine the nature of the eigenvalues of the three-layer 
instabilities as a function of latitude ac ross  the jet  s t ream. 
distributions, the horizontal distributions of the eigenvalues and the associated' 
cri t ical  wave numbers are calculated and compared with those obtained from 
the two-layer Kelvin-Helmholtz model. 

Based on these 

Basic State Parameters (AI, h p  R1, and R2) 

The Endlich and McLean jet  s t ream model is based upon data collected 
in middle latitude and subtropical jet streams. The average core velocity in 
their model is 73 m sec-,, and occurs at an altitude of 10.3 km. Vertical 
c ros s  sections that show the distributions of velocity and potential temperature 
can be found in their  paper 1531. Now it is clear  that broken-line profiles of 
potential temperature and horizontal wind speed do not occur in nature. 
However, it was shown previously that broken-line profiles behave like con- 

' tinuous profiles for sufficiently small  wave numbers. To apply the three- 
layer model to the Endlich and McLean model, we  must establish a procedure 
whereby w e  can "layerft continous profiles and specify their  broken-line 
counterparts and thus calculate A,, h2, R,, and R2. This procedure will  be 
established in this section by analyzing special cases. 

Layering . ApEoximation for  s. In examining the nature of the 5 
layering approximation, we  consider a quiescent layer of fluid of depth H 
characterized by S being a constant and bounded by rigid horizontal surfaces 
above and below. The solution of the governing differential equation (66)  that 
satisfies the rigid boundary conditions of equation (68) is given by 

n7rz 
$J = A s i n -  H n = I, 2 ,  ... (331) 
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provided w satisfies the characteristic equation 

(332) 

where A is a constant of integration. 

If w e  approximate the I? distribution with a two-layer model charac- 
terized by the lower and upper layers having depths h and H - h, respec- 
tively, with mean potential temperatures 
equation (66) that satisfies the boundary and interfacial conditions of equations 
(68), (87) ,  and (89) is given by 

and e2, then the solution to 

#J = A sinh K Z  (0 < z < h) 

sinh Kh sinh K ( H  - h) ' = s i n h K ( H - h )  

provided 

= gK(i - P )  
coth Kh + f i  coth K (H - h) 

where 

Y 

(h < z < H) Y 

(333) 

(334) 

(335) 

Denoting the w's  for the constant S model and the two-layer model by wi 
and w2, we find for the first mode (n = I)  

S' k2 + f 2  

Sk coth kE + p coth k(1  - E) 
= - 

(337) 

130 



where 

and 

S' = i-p 
H 

h 
H 

E = -  
Y 

k = KH 

In the limit, a s  k approaches zero,  we find that 

l im (5) i + E ( p - l )  s = 
7 

k -  0 

while the asymptotic behavior as k approaches infinity is given by 

S' k (2) " S T q  

(338) 

(339) 

(340) 

(341) 

(342) 

Thus, for  sufficiently small  k,  wi will differ from w2 by a constant and w2/w1 
increases without bound a s  k becomes large. 

If we a r e  interested in layering the medium so that wz/wi is unity for 
a particular wave number, then equation (337) serves  as a basis for  obtaining 
an estimate of E and thus the appropriate layering of the zero-order state. 
The basic state potential temperature is given by 
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If we choose to represent and G2 by vertical spatial averages, then 

and thus 

E 
EX + i - '- --x- S' = 

EH(X - x') 

where 

SH 
x = e  

(344) 

(346) 

(347) 

Upon substituting equations (346) into (337) , setting w2/01 equal to unity, and 
utilizing the approximation p = I except in the definition of SI, we find 

E 

(348) 
EX+ i - E - x k2+7r2 __ ... . - k l n x  = 0 

E ( .  - x') Coth Ek + coth k ( i  - E )  

Upon selecting typical atmospheric values of SH (0.02 5 SH 5 0.07) and 
k (0.025 5 k 5 2.0) , 
two roots in the interval 0 < E < I. One root, denoted by el, is in the 
interval 0.225 < < 0.285, while the other, denoted by E % ,  is in the interval 
0,715 < < 0.775. Thus, for  fluids characterized by S = constant, a reason- 
able approximation to the eigenvalues can be obtained by partitioning the layer 
of fluid into two layers having depths on the order  of 0.75H and 0.25H and the 
thickest layer can be either above o r  below. Based upon this analysis, we 
might conclude that for large scale atmospheric jets characterized by constant, 
but different values of S above and below the jet maximum, that an appropriate 
layering scheme could be as follows: 

a numerical analysis revealed that equation (348) has 
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I. Layer I: -0.5H < z < -0.125H 

2. Layer 2: -0.125H < z < 0.125H 

3. Layer 3: 0.125H < z < 0.5H 

This is the layering scheme that w a s  used to model the g-field of the Endlich 
and McLean jet model. 

To analyze the Endlich and McLean jet s t ream model, we  selected 
H = 4 km, which implies h = 0.5’km. This selection of H has the feature 
that the lower and upper interfaces of the three-layer model are located in the 
regions where the jet  s t ream model of the Endlich and McLean [53.], the 
analysis of Sasaki [54],  and the work of Clodman, Morgan, and Ball [55] show 
the majority of incidences of clear air turbulence to occur. 
H w a s  also based upon a survey of jet profiles measured at Cape Kennedy, 
Florida, during the years  of 1964 through 1967. 
many jet profiles are characterized by the wind shear being a minimum a t  
approximately 2 km above and below the jet maximum. In fact, many profiles 
appear to have a shallow layer located at approximately 2 km above and below 
the jet maximum in which the speed w a s  approximately constant. 

The selection of 

This survey showed that 

- Layering .. Approximation for u. An estimate of how one should layer 
the u profiles c& be obtained by examining the perturbations associated with 
the zero-order state given by 

(349) 
Z - 

u = u tanh- (-w < z < w )  
00 6 

where uw and 6 are constants. Drazin and Howard 1521 have solved 

equation (66) for  this zero-order state for the case of longitudinal perturbations 
(KI = K )  . 
small  values of K 

Based upon an approximation procedure, these authors find that for  

U 

[ ~ 6  - 1 .785(~6) ’+  1 . 5 2 6 ( ~ 6 ) ~ +  ... i 1 w =i- 6 (351) 
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Let us now layer the velocity profile equation (349) , so that 

(-.. < 2 < CQ)  Y (352) 

where u is a constant to be determined. This velocity profile is a Kelvin- 

Helmholtz vortex sheet and the eigenvalues are given by 
0 

w = * K U ~  Y (353) 0 

[see equation ( 217) ] . 

Equation (353) , which will  asymptotically tend toward equation (351) 
as K approaches zero,  implies that a velocity profile should be layered by 
selecting the velocities associated with the extremes of the continuous. velocity 
profile. Thus, for  a jet, one might select  the core  velocity and the minimum 
values of the velocity profile above and below the jet maximum to construct 
the broken-line counterpart for the three-layer model. This w a s  the selection 
scheme used in the analysis of the Endlich and McLean 1531 jet s t ream model. 
In the analysis, we  selected the local maximum velocity, as well  as the wind 
speed at 2 km above and below the jet maximum at intervals of 0.'5 deg of 
latitude from 2 deg of latitude north to 3 deg of latitude south of the jet core. 
The selection of the winds at 2 km above and below the jet maximum w a s  based 
on a survey of the jet profiles measured at Cape Kennedy, Florida, during the 
years  1964 through 1967. 

The shear of the velocity profile [equation (349)]  is given by 

U 
co z sech2 - du 

dz 6 6 
- - -  - (354) 

Evaluating this expression at z = 0 shows that d$dz is proportional to 
6-I. This means that as 6 tends to zero,  the shear at the origin becomes 
large and the result  given by equation (351) tends toward equation (353) . This 
means the broken-line approximation improves as the shear  of the zero-order 
state becomes large.  
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The validity of the layering approximation, for  both the velocity and 
the potential temperature profiles, tends to improve as the wavelength of the 
disturbance tends toward infinity. This means that the larger  disturbances 
with regard to the length scales of the zero-order flow are influenced less by 
the details of these profiles. These results are consistent with the analysis 
by Drazin [ 561 of discontinous velocity profiles for the Orr-Sommerfeld 
equation. 

Distributions of hi, ha R,, and R2. The horizontal profiles of A,, 
associated with the Endlich and McLean jet s t ream model ha, Rl, 

and shown in Figures 23 and 24, were calculated with the layering procedures 
discussed above. In the calculations, h = 0 . 5  km. The horizontal profile of 
u2 that w a s  used in the calculations is shown in Figure 25. In this figure, 
u2 is normalized with the Endlich and McLean jet core velocity 

and R,, 

- 
- 
- 

= 73 m sec-I). ('core 

R ,  or  R, 

N O R T H  S O U T H  
7 -  

I ~ 

I *  

-2 -1 0 1 ; 3 
I . . .  1 

- I  

D e g r e e s  o f  L a t i t u d e  M e a s u r e d  f r o m  J e t  C o r e  

Note: These profiles were  derived f rom the Endlich and McLean 
jet s t ream model. 

Figure 23. Horizontal profiles of Rl and R,. 
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Note: These profiles were derived f rom the Endlich and McLean 
jet s t r eam model. 

Figure 24. Horizontal profiles of hi and h2. 
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D e g r e e s  o f  L 2 t i t u d e  M e a s u r e d  f r o m  J e t  C a r e  

- 
Note: u is the core velocity in the Endlich and McLean 

core  
jet s t r eam model (u  = 73 m sec-l). core 

Figure 25. Horizontal profile of i2/i core' 
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Jet St ream Eigenvalues 

The eigenvalues for  the values of hi, h2, R,, and R2 in Figures 23 
and 24 w e r e  calculated with equation (274). 
for  the perturbations associated with the vertical core  profiles of 8 and u 
of the Endlich and McLean jet  model, is similar to the ones discussed previously 
(Figs. 3 through 7) .  The core  eigenvalues possess only two branch points. 
Calculations with equation (274) and the profiles of A,, ha, Rl, and R2 in 
Figures 23 and 24 showed that the eigenvalues f o r  conditions away from the 
core also possess only two branch points. Thus, it appears that the synoptic 
scale jet  s t reams are characterized by single-valued absolute stability 
boundaries; i. e. , the absolute stability boundary for  a particular location in 
the jet s t ream is characterized by only one critical wave number. 

Figure 26, a n  eigenvalue diagram 

l o  1 
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I 

. 5  
- .- 
;5 - 
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A 
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. I  
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Note: An explanation of the notation in this figure is given in the 
caption of Fig. 3; these eigenvalues are associated with 
the vertical  core  profiles of s and u of the Endlich and 
McLean jet model. 

Figure 26. Eigenvalue diagram for  Ai = 0.668, A2 = 0.658, 
Rl = 0.048, and R2 = 0.113. 
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For  sufficiently small  k, the basic s ta te  flow is characterized by three 
neutral waves that propagate toward positive values of x and one neutral wave 
that propagates in the opposite direction (Fig. 26). A s  k increases,  v 

r3 
becomes negative, and the flow for  a given value of k is characterized by 
four neutral waves that propagate toward positive values of x; i. e. , in the 
direction of the zero-order flow associated with the maximum wind level. The 
flow in the core  becomes unstable at k = 0.66. The associated growth rates 
v are indicated in Figure 26. 
i 

Figures 27 and 28 show the dependence of the eigenvalues upon the 
latitude with respect to the jet core f o r  k = 0. i and i. 0, respectively. Figure 
27 shows that for  k = 0. i ,  all perturbations are neutral. At 2 deg of latitude 
north of the jet core ,  for k = 0. i, the flow is characterized by three negative 
real eigenvalues, v v and vr4, and one positive real eigenvalue, 

v A s  we approach the jet core f rom the north, I, decreases,  and upon 

traversing the core,  v 

latitude and experiences a minimum at i. 5 deg of latitude south of the core. 
The eigenvalue v 

becomes positive at 2.3 deg of latitude south of the jet core. For  sufficiently 
small  k(wO.02) , our calculations revealed that v > 0 for the range of 

latitude being considered. Figure 28 shows that for  k = i. 0, all the phase 
frequencies a r e  negative. In the interval of latitude between 0.22 deg north 
and 0.58 deg south of the jet core,  the real par t  of the eigenvalues v and 

v coalesce, and in this interval of latitude the flow is unstable for  k = i. 0. 

This figure also indicates the growth rate  v of the perturbations, and in 

this case,  v 

jet core. This resul t  seems to imply that the south side of the jet s t ream is 
more unstable to shearing instabilities. F o r  sufficiently large k (-i. 7) , i t  
w a s  found that v and vr4 coalesce so that in the vicinity of the core the 

flow is characterized by two unstable modes and two damped modes. A s  k 
becomes large, the instability spreads to the north and south. 

ri' r2 '  

1-3' r 3  
becomes negative at approximately 0. 8 deg of r 3  

then increases as w e  progress  toward the south, and r 3  

r 3  

r i  

r2  

i 
is a maximum at approximately 0.2 deg of latitude south of the 

i 

r 3  

The values of k that correspond to the absolute stability boundaries 
and the unstable branch points (branch points that occur within an unstable 
domain), denoted by kf and k f ,  respectively, are represented by the solid 
curves given in Figure 29. The values of kf and kf , based upon conditions 
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Note: The notation in this figure corresponds to that in Fig. 26. 
In this case the eigenvalues are real. 

Figure 27. Horizontal profiles of eigenvalues for  k = 0. I based 
upon the Endlich and McLean jet  model. 

at the lower and upper interfaces, respectively, calculated with the two-layer 
Kelvin-Helmholtz model, a r e  indicated by the dashed curves. This figure 
implies that the jet character of the wind profile, in the vertical, with regard 
to shearing instability calculations , is important only within approximately 
I deg of latitude north and south of the jet core. In the immediate vicinity of 
the jet  core,  the cri t ical  wave numbers associated with the three-layer model 
differ f rom those predicted by the Kelvin-Helmholtz model by approximately 
35 percent. According to the Endlich and McLean model, hi and h2 can 
vary by as much as 10 percent. A reduction of hi and A2 by this percentage 
will  reduce the cri t ical  wave numbers given in Figure 29, and the associated 
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Note: The notation in this figure corresponds to that in Fig. 26. 
In this case the eigenvalues v i  and v 2  are complex in 
the interval of latitude between 0.22 deg north and 0.58 deg 
south of the jet core. 

Figure 28. Horizontal profiles of eigenvalues for  k = I. 0 based 
upon the Endlich and McLean jet model. 

departure of k predicted by the three-layer model f rom the Kelvin- 
Helmholtz model is on the order  of 50 percent in the vicinity of the jet core. 

The critical wavelength A: associated with can be calculated 
with the expression 

6.28 
A i  = - k i  

9 ( 3 5 5 )  

where A'; is in units of kilometers and k: is dimensionless. 
the jet core,  the three-layer model predicts A': = 10.45 km, while a t  1 deg of 
latitude removed from the core to the north and south, A': = 2.4 km and 
A*; = 2.72, respectively. 

Thus, below 

.b 
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Note: The solid curves correspond to the three-layer results 

and the dashed curves are the values of kr and k: 
predicted by the two-layer theory. 

Figure 29. Horizontal profiles of the cri t ical  wave numbers k: and k:. 

Figure 30 shows the values of v = v = v V and v rl  r2 rc ’  r3’ r 4  
associated with the absolute stability bounda.ries. 
v is scaled with the local value of &. Figures 25 and 30 show that &,/i 
decreases more slowly than -v increases as we depart f rom the vicinity 

of the jet core  to the north and south. This means that the frequency of the 
cri t ical  mode is lower in the vicinity of the core and is actually at a minimum 
at 0.5 deg of latitude south of the jet core. However, a calculation based 
upon the information in Figures 25, 29, and 30 revealed that the waves at 
cri t ical  conditions are characterized by the largest  phase velocity occurring 
at the core  with a slightly more rapid decrease in the phase velocity to the 
north as compared to the south. At  2 deg north and south of the core,  the 
critical phase velocities normalized with u 
respectively. 

One should remember that 

core  

r c  

are 0.65 and 0.68, core  
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Note: In this figure, v = v 1  = v2. The notation in this figure rc 
corresponds to that in Fig. 26. 

Figure 30. Horizontal profiles of the eigenvalues associated 
with the absolute stability boundary. 

The vicinity of the synoptic scale jet s t ream has been found to be a 
preferred location of c lear  air turbulence. For  example, Bannon [ 57,581 
reported 20 percent of all cases  and two-thirds of severe turbulence associated 
with jet s t reams;  Jones [59] found 71 percent of severe turbulence near  the 
jet s t ream; Balzar and Harrison [60]  reported 69 percent of 87 cases  of 
severe turbulence near  the jet  stream; Estoque [61] , Clem 1621, and Lake [63] 
also found such relationships. Analyses of c lear  air turbulence case histories 
in the vicinity of the jet s t ream show that the quadrant below and on the cyclonic 
(cold air) side is a preferred area with a secondary maximum above the jet  
axis on the anticylconic side. However, this resul t  w a s  obtained by analyzing 
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case histories of c lear  air turbulence obtained primarily over land. Clodman 
et al. [55] have analyzed 62 cases of c lear  air turbulence in jet  s t reams over 
the At l an t i c  Ocean and found that the maximum of turbulence occurrence is 
above the jet axis on the anticyclonic side, in contrast to findings over land. 

In comparing c lear  air turbulence over land and water ,  Clodman et al. 
found that (a) the rate of occurrence of turbulence at high levels over the 
ocean is at least one order  of magnitude lower than over land, (b) the per- 
centage of turbulence reported over the ocean which is of light intensity is 
less  over land, and ( c )  the horizontal dim6nsions of the turbulent patches over 
the ocean appear to be about twice as large as over land. These resul ts  imply 
that terrain features play a key role in  the generation of c lear  air turbulence. 

It is well  known that mountains can induce lee waves which generate 
turbulence [ 641. However, other authors find that ordinary rolling terrain 
with obstacles that are less  than 300 to 700 m in height is important in the ! 

generation of c lear  air turbulence. Thus, for  example, Jenkins [65] finds 
that the effect of obstacles can be felt to 25 t imes their height; Ludlum [661 
suggests that c i r rus  cloud can be caused by hills 300 m high; Turner [671 
found that high level turbulence over coastal areas in England was  much more 
common than over the adjacent waters; and Clodman et al. [551 found that 
ordinary terrain with small  obstacles is correlated with clear  air turbulence 
and the effect of terrain is not simple since topographic features may be 
complex; however, the terrain effect appears stronger with a well-defined 
sharp ridge. The analysis in this report  is most applicable to the generation of 
shear  wave instability in jets over oceans because the lower boundary is a 
flat surface infinitely far removed f rom the jet  core. 

Reiter and Burns [68] have calculated spectra of c lear  air turbulence 
velocity components and find that the spectra of the horizontal components for  
wavelengths less than 3000 m behave like 

cj E ( K )  =  eo^ Y (356) 

where E and q a r e  constants. The quantity q has values that range 

between -3 and -5/3. 
like equation (356) for  wavelengths less than 200 m with q = -5/3. However, 
the w-spectra are characterized by a peak at wavelengths near  700 m. Several 
of the w-spectra have an energy minimum o r  "gap" at wavelengths on the order  

0 

The spectra of the vertical  velocity generally behave 

I 4 3  



of 1300 m. This behavior is only weakly or  moderately expressed in the 
horizontal spectra. Reiter and Burns [ 681 concluded that the peaks in the 
w-spectra were manifestations of unstable shearing gravity waves because 
the degree to which the long-wave energy in the vertical component was less 
than the one observed in the horizontal components depended on the angle 
between the flight direction and the wind direction. 

The peak of the w-spectrum will occur a t  a value of k that is greater 
if this peak is associated with breaking waves. The perturbation 

i’ 

than k:k 
with the largest growth rate,  -v wi l l  grow faster than the other perturba- 

tions, .and thus, this perturbation is the one which wil l  ultimately break and 
result in clear air turbulence. However, the three-layer model predicts 
that the perturbations with infinitesimally small  wavelengths have the largest  
growth rates (Fig. 26). If we would have included the effects of nonlinear 
interaction in the analysis, represented linearly with eddy coefficients , then 
the most preferred or  unstable wave number, k would have been finite [ 361. 

However, the order of the governing differential equation (66) would have been 
of order six or greater,  depending on the assumed f o r a s  of the eddy coefficients. 
For  constant eddy coefficients, equation (66)  becomes a sixth-order differential 
equation in $ and the secular equation is a twelfth-degree polynomial in v. 
Nevertheless, it is reasonable to suppose that the wavelength of the most 
unstable mode is positively correlated with the three-layer critical wave 
number. Thus, it might be concluded from Figure 29 that the wavelength 
associated with the peak of the w-spectrum is greatest below and slightly to 
the south of the core. A s  we proceed away f rom the core, the peak of the 
w-spectrum should shift toward smaller wavelengths. One should remember 
that not all w-spectra measured in jet s t reams a r e  characterized by a shear 
gravity wave peak. Some observed spectra have a monotonic decrease of the 
spectral energy density f rom large scales to small  scales located in the 
inertial subrange. 

0, 

3 

The root mean square response experienced by an aircraft that has 
response function T(  w)  a t  frequency o is given by 

00 

2 = IT(w) l2 E ( o )  dw Y 

0 
(357) 

where E ( w )  is the vertical velocity input turbulence spectrum and 2 is the 
variance of the gust loads. For most aircraft ,  the pitch-rate and acceleration 
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response transfer functions have a peak at frequency approximately equal to 
0.5 cps with a secondary peak associated with the long-period Phugoid modes 
at a frequency on the order  of 0.01 [ 691. The Fourier  components of the 
turbulence spectrum associated with high frequencies in the vicinity of the 
0.5 cps peak of the aircraft  transfer function give the major contribution to 
the response integral. Commercial aircraft  which fly at jet s t ream altitude 
have true air speeds that are approximately equal to 250 m sec-'. In t e rms  
of wavelength, the high frequency peak of the transfer function occurs at clear 
air turbulence wavelengths approximately equal to 500 m. 

Upon breaking, the shear  gravity waves supply energy to the clear air 
turbulence scales via a cascade of energy from the gravity wave scales to the 
turbulence scales. If the peak of the w-spectrum occurs at frequencies that 
are smaller than 0.5 cps, then 2 wil l  be relatively large; however, if the 
peak occurs at frequencies greater than 0.5 cps the aircraf t  will  not "feel" 
the full intensity of the turbulence. 

An upper bound on the preferred wave number, k is the cri t ical  
0' 

wave number k' . However, k = k'  is a rather unlikely situation because 

this would mean that the generation of shear  gravity waves is an extremely 
narrow band process. 
microstructure, variable in space and time, prevents the formation of a 
frcleanff wave of well-defined wavelength. 
inferred from the appearance of stratus cloud decks viewed from an aircraft  
that rfwavesrf forming on a stable interface may cover a relatively wide spectral  
band of wavelengths. For  preferred wavelengths on the order  of 500 m 
(aircraft  turbulence scale) and 2h = 1 km, we  have k = 12.6. On the north 

side of the jet, the values of k" increase rapidly from k t  = 0.6 at the 
je t  axis to kT = 8. 0 a t  approximately 2 deg north (Fig.  29). It is 
possible to have k > 12.6 north of the core  for  latitudes greater  than 2 deg 

north, s o  that from a shear  wave instability viewpoint the occurrence of c lear  
air turbulence that could affect a i rcraf t  is debatable. To the south of the jet 
axis, both k: and k; are less than 7.0. The overall lower values of e 
and k; on the south side of the jet imply that k and ko2 are usually less 

than the corresponding values associated with the north side. Thus, we might 
conclude from these arguments that the chance of finding turbulence is greater  
on the south side of the jet, other conditions being equal. The resul ts  of 
Clodman et al. [ 551 appear to  confirm this result  over the oceans. One should 
remember that we have only examined the effects of vertical shear  on the 
generation of clear air turbulence. If we  include the other factors that are 

0 

Reiter and Foltz [ 641 explain that the atmospheric 

Further,  they note that it may be 

0 

0 

01 
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known to be correlated with clear air turbulence (curvature of the basic state 
flow, horizontal shear,  vorticity advection, etc. } the picture becomes com- 
plicated, and thus, the above comments should be considered speculative. 
Thus, our conclusions fail if the energy gap is rffilled-inrf by energy releasing 
mechanisms other than vertical  shear. In addition, w e  have applied the 
three-layer model to a mean jet s t r eam model; it is possible to have a 
different picture emerge if we apply the theory to each individual jet s t ream 
in the sample. 

Boundary Effects 

To obtain the solutions to the three-layer model, we  assumed that the 
lower rigid boundary w a s  located at z = --co. In this section, we examine the 
effect this assumption has upon the solutions and the jet s t ream eigenvalues. 
To perform this task we  will  examine a Kelvin-Helmholtz shear layer with the 
origin of the coordinate system located at the vortex sheet. The solution of 
equation (66) that satisfies the boundary conditions of equations (68) and (71) 
and the interfacial condition of equation (87) is given by 

- 
(-H < z < 0) 

sinh ~ ( z  + H) 
?,/J = A (w + U I K )  a e l  sinh KH (358) 

Y (359) (0 < 2 < -co) 
- -KZ 

$ = A ( w  + U2K) e 

where H is the distance between the lower rigid surface,  and the interface 
and the other symbols have their usual meaning. Upon substituting equations 
(358) and (359) into the interfacial condition equation (89) , we find 

where p = The solution of equation (360) for  w is given by 



pc2 + coth KH I - P  
= -K ( /3+ c o t h ~ H  ) * [gK P +  c o t h ~ H  

- 

The condition for  the existence of complex eigenvalues and thus instability is 
given by 

, 

o r  

where R 

disturbance s ize  K-'. 

boundary is obtained by making equation (363) an equality, so that 

is a Richardson number based upon the length scale being the 
K 

The crit ical  conditions o r  the equation for  the stability 

where :I: denotes a cri t ical  parameter.  The asymptotic behavior of equation 
(364) a s  H approaches infinity is given by 

This is the resul t  we would have obtained by placing the lower rigid boundary 
at z = -a ab initio. If we  hold H fixed and let K"' approach infinity, w e  
find 

-- 



This means that the effect of the lower rigid boundary is negligible fo r  
sufficiently large K * .  Upon letting K'$H approach zero,  we find 

This result implies that the effect of moving the lower boundary toward the 
Kelvin-Helmholtz sheet tends to destabilize the flow, since instability will  
set in for  Richardson numbers greater than p ( I  + p )  
disturbance s ize  will be increased. It was explained previously that 
0.95 < p < I. 0 fo r  most statically stable stratifications in the atmosphere 
and that it is reasonable to approximate p as unity in those te rms  that do not 
contain the acceleration of gravity. It is clear  that equations (365) and (367) 
do not suffer significant distortion with this approximation, 

and the critical 

Equation (364) will  yield the largest  cri t ical  wavelength A"' that 
satisfies the limiting behavior in equation (365) to within a prescribed 
permissible e r ro r .  If we select R" = 0.55 and approximate p as unity, 

then equation (364) predicts. that those cri t ical  wavelengths that satisfy 
K 

will  a lso satisfy equation (365) to within 10 percent. If we use equation (368) 
to estimate an upper bound on the permissible critical wavelengths for  the 
three-layer model and note that A" = 47rhk';'-', 
jets and shear  layers  that satisfy 

then those perturbations in 

can be analyzed with the three-layer jet model, with the lower boundary 
displaced to z = --oo. In the analysis of the Endlich and McLean jet model, 
h = 0.5 km; thus, according to equation (369) and H = 10 km, w e  must have 
k 2 0.12. Since the k';' configuration associated with the Endlich and McLean 
model satisfies this equation, the effect of the lower boundary can be neglected. 
However, this does not mean that all boundary effects can be neglected since 
this discussion is concerned only with horizontal boundaries. If the lower 
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boundary is characterized by hills, mountains, etc. , then these results fail 
because the fluid wi l l  experience forced motions at the lower boundary. 
Finally, most meso- and micro-scale shear layers and jets above 4 km appear 
to satisfy equation (369). 

Cor io1 i s  Effects 

A s  discussed previously, to neglect Coriolis forces, we assumed as 
a working hypothesis that 

where L, and L3 are the longitudinal and vertical length scales; see 
equation (46).  In the analysis of the stability properties of the Endlich and 
McLean jet model, we  set  h = 0.5 km, s o  that, in the middle layer of the 
three-layer model, L3 is on the order of I km. 'To estimate the vertical 
length scale in the upper and lower layers,  let us assume 

lzcl I 
L3 - (371) 

as w e  did previously. The solution in the upper and lower layers is 

proportional to e-KZ and e , respectively, so that K Z  

We choose the horizontal length scale to be the wavelength of the perturbations, 
ZTK-I. Thus, in the upper and lower layers,  Ll/L3 - 27l, so that. equation 
(370) is satisfied. In the middle layer 

Ll 271 
L3 K 
- - -  Y (373 )  

149 



where K has the units of km-I. In the Endlich and McLean model, the longest 
unstable perturbations have wavelengths approximately equal to IO k m  so that 
in the middle layer L,/L3 - 10. Thus, the perturbations in the middle layer 
satisfy condition (370).  We may conclude from this discussion that we can 
neglect Coriolis forces in the analysis of shear  layer and jet instabilities. 

S U M M A R Y  A N D  RECOMMENDATIONS 

The properties of shear  layer and jet instabilities in stratified fluids 
have been examined. 
associated boundary and interfacial conditions suitable for analyzing shear 
layer and jet  instabilities in heterogenous media were derived. The general 
properties of these equations and boundary and interfacial conditions for  con- 
tinuous and broken-line flows were examined. The dynamic stability properties 
of three-layer broken-line flows in which u and e had constant, but different, 
values in each layer w e r e  examined. 

The first-order isentropic perturbation equations and the 

Summary 

The main results in this report  w e r e  obtained where the conclusions 
of the analyses were given in the course of the discussion. In this section, 
the conclusions are listed for  convenience. 

A s  discussed ear l ier ,  emphasis was on the solutions to the governing 
differential equation ( 66) and the associated boundary and interfacial conditions 
of equations (68) , (71) , (87) , and (89) .  In the analysis, three types of 
broken-line flows were considered. In the analysis it was  shown that the 
permissible number of modes associated with the types ( I )  and (3) broken- 
line flows, f o r  specified values of K' and K ~ ,  cannot exceed 2N,  where N 
is the number of interfaces within the broken-line flow. 

Also, the consequences of the transformation $ = aF were examined 
in the context of continuous and discontinuous flows. In the case of continuous 
flows, a quadratic integral form w a s  derived from which i t  w a s  concluded 
that the eigenvalue equation for  continuous flows has two and only two branches 
in the complex a-plane. 
necessary and sufficient condition for  instability in continuous flows; however, 

This quadratic form w a s  also used to derive a 
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since the condition depended explicitly on the solution, its usefulness w a s  
limited. Nevertheless, the condition leads to the result  that all continuous 
shear  layer and jet flows that are statically unstable everywhere are dynamically 
unstable. The transformation 21, = QF leads to the result  that for continuous 
flows K ~ G  + w must vanish at least once in the interval 0 S z 5 w and the 
complex wave frequency for  any unstable mode associated with S > 0 must 
lie inside the semicircle which has the range of K ~ U  for  diameter in the lower 
half of the complex w-plane. These results w e r e  first obtained by Synge [37] , 
Miles [ 311 , and Howard [ 331. 
possible only to derive a general necessary and sufficient condition for instability 
for the case in which e is continuous across  the interfacial surfaces;  thus, a 
general necessary and sufficient condition for instability in broken-line flows 
has yet to be obtained. The theorems of Synge [ 371 , Miles [ 311 , and Howard 
[33] a r e  valid for broken-line flows in which 0 is continuous across  inter- 
facial surfaces.  It remains to show that these theorems a r e  universally valid 
for all  broken-line flows. 

Fo r  broken-line flows, it appears that it is 

For  continuous flows, the transformation z,b = Q1/2H leads to a quadratic 
integral form from which it may be concluded that 

everywhere, is a sufficient condition for stability. 
derived by Miles [31]. In discontinuous flows, Miles' theorem is valid if  
s, 6 ,  and Du a r e  continuous across  the interfacial surfaces. A general 
discontinuous counterpart of Miles' theorem has yet to be obtained. 

This theorem w a s  first 

Later in the report, we  analyzed the behavior of the eigenvalues of 
the three-layer model as the wave number of the disturbances approached 
infinity. Instability w i l l  set in for sufficiently large wave numbers and the 
limiting solutions represent localized Kelvin-Helmholtz instabilities at  each 
interface. 

Also, w e  analyzed two special cases: the symmetric jet and the odd 
shear  layer. The absolute stability boundary of the symmetric jet  is charac- 
terized by one cr i t ical  mode of disturbance, and the interfacial Lagrangian 
displacements are out of phase by 180 deg (odd solutions). A second 
instability, characterized by even solutions in the vertical, sets in at some- 
what larger  wave numbers. The absolute stability boundary of the odd shear  
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layer is characterized by two crit ical  modes, one even, the other odd. These 
modes propagate in opposite directions with the same phase speed, so that the 
interaction between these modes results in a standing wave instability in a 
f rame of reference that is translating with the mean flow in the middle layer. 
In the symmetric jet, the Lagrangian displacements at the upper and lower 
interfaces for  all modes of motion are either in phase o r  out of phase by 180 
deg. In the odd shear  layer,  only the neutral modes of motion have these phase 
properties. A s  k increases past the critical value, in the odd shear layer,  
the phase of the interfacial Lagrangian displacements depart f rom 0 and 180 deg. 

A general eigenvalue analysis of the three-layer model w a s  presented. 
Based upon this analysis, we may make the general comment that no universal 
cri t ical  Richardson number exists for  the onset of shearing instability. Of 
course,  in continuous flows, the cri t ical  Richardson number has an upper 
bound of 1/4 for  longitudinal disturbances, according to Miles' theorem. The 
three-layer flows are more unstable to long wave disturbances than the two- 
layer  Kelvin-Helmholtz flows, and the absolute stability boundaries can be 
single-valued and multivalued functions of k':'. In the limit, as Jhl 1 Jh2 1 ,  
Riy o r  R, approach infinity, the absolute stability boundaries become single- 
valued functions of k: . 
absolute stability boundaries are triple-valued functions of k:::. The multi- 
valued nature of these stability boundaries results from the global interaction 
of the shear  layer o r  jet flow. For  a given set of values for R1, R,, I I - A, I 
and 11 - h ~ / ,  the shear  layer flow configuration wi l l  have the smallest  value 
of k':: and thus a r e  more unstable than jet  flows to the long wave perturbations. 
This happens because the basic state vorticity vectors in the shear  layer flows 
ac t  in the same sense; i. e. , the basic state vorticity has the same sign at the 
upper and lower interfaces, while in the jet flows the basic state vorticity at 
one interface tends to stabilize the instability at the other interface and vice 
versa.  

For intermediate values of these parameters ,  the 

The three-layer solutions are approximate long wave solutions for  
continuous flows. This is true because the long wave perturbations fffeelfl 
only the gross  features of the basic state flow, while the short  waves fffeelff 
the details of the basic state flow. The broken-line solutions appear to obey 
Howard's [33] semicircle theorem and Synge's [37] result. In this sense,  
the three-layer flows behave like continuous ones. 

The generation of shearing instabilities in synoptic scale jet s t reams 
w e r e  analyzed by 'applying the three-layer model to the jet  s t ream model of 
Endlich and McLean [531. The synoptic scale jet s t reams do not appear to be 
characterized by multivalued absolute stability boundaries; i. e. , k';' is not a 
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multivalued function of the basic state parameters.  The smallest  cri t ical  wave 
numbers occur in the vicinity of the jet core. If kf and k$ are identified 
wi th  conditions, or ra ther  the inflection points, above and below the jet 
maximum, then it can be concluded that, in the context of shearing instabilities, 
the most unstable region occurs below the jet core  slightly to the south. 
However, it must be remembered that the Endlich and McLean jet model is 
an average of actual conditions, so that in actual flows it is possible that the 
most unstable region could occur to the north of the jet core. The important 
point here  is that the most unstable region is below and in the vicinity of the 
jet core. The three-layer model and the two-layer Kelvin-Helmholtz model. 
predict significantly different results within I deg of latitude north and south 
of the jet core. The predicted critical wave numbers differ by approximately 
35 to 50 percent in this region. This means that the jet  character of the wind 
profile is important in the vicinity of the jet core  in the context of shearing 
instability. 
same results;  therefore, it may be concluded that the instabilities in the regions 
outside of the jet core essentially occur as shear  layer instabilities. 

Outside of this region, the two models predict essentially the 

Recommendations for Fu tu re  Work 

The main purpose of this report  is to extend the knowledge of the first- 
order  instabilities in stratified shear  layer and jet flows. In particular,  w e  

were. interested in establishing the relationship between these instabilities and 
the symmetry properties of the flow. To do this, we used an inviscid broken- 
line three-layer model. Admittedly , the broken-line flows are artificial; 
however, they permit  one to analyze many flows with relative ease,  and in the 
context of the long wave instabilities, the broken-line flows yield qualitatively 
correct  results. 
shear  layer and jet instability in stratified media has been highly simplified. 
It is felt that if  any further understanding of jet and shear  layer instabilities 
is to be made, further theoretical advances must be made. 
approach that could be taken in the future would be to gradually increase the 
complexity of the problem. 

The approach taken in this report  in regard to the problem of 

The most logical 

The obvious next s tep would be to attempt the analysis of this report  
with continuous profiles of e and u. This would be very difficult. Two 
approaches could be taken; an analytical or  a numerical one. It would be 
desirable to perform analytical calculations whereby one could obtain an 
eigenvalue equation in which the parameters  associated with the basic state 
flow could be varied. This would lead to a better insight into the problem. 
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However, to do this one must judiciously select basic s ta te  flows that permit 
one to obtain solutions to equation ( 6 6 ) .  It is well known that seemingly 
uncomplicated basic flows resul t  in very complicated mathematical analyses 
in linear stability problems. The recent analytical work by Miles 1321 could 
serve  as a start ing point in the area of analytical computations. If one is not 
so  fortunate to  develop a basic state flow that would permit  one to obtain a 
solution to equation (661, then one might r e so r t  to numerical methods. The 
numerical methods that are used to solve the Orr-Sommerfeld equation could 
be used as a start ing point [711. In the event of either the numerical o r  the 
analytical solutions , the results of these calculations would yield valuable 
information about the intermediate and short  wavelength instabilities. 

A t  this point, one might complicate the problem by including the 
dissipative effects of eddy viscosity and heat conduction o r  molecular viscosity 
and heat conduction. These effects wi l l  introduce linear second-order ternis 
in the momentum conservation and thermodynamic energy equations. For  
simplicity, it could be assumed that the eddy coefficients are constants. The 
molecular coefficients wi l l  be constants within the framework of the Boussinesq 
approximation. The dissipative eddy and molecular te rms  wi l l  have the same 
mathematical form. The addition of these te rms  results in a sixth-order 
governing differential equation in $. We have the added complication that this 
equation and the associated boundary conditions do not constitute a self-adjoint 
system, so that it might not be possible to use variational methods to solve 
this equation. 

It is well  known that the addition of resistance o r  dissipative effects to 
systems oftentimes results in instability. Examples in mechanics , electronics, 
and administration and economics can be cited. Betchov and Criminale [71] 
explain tha t  resist ive instability has been uncovered in magnetohydrodynamics 
and plasma physics, and that the destabilizing effect of resistance is oftentimes 
a matter of delay. They cite the case of the harmonic oscillator whose 
restoring force is simply retarded by the positive constant T .  In this case,  
the basic equation is 

Upon expanding x(t - T )  in a power series in T and retaining only the f i r s t  
two te rms  in the ser ies ,  we obtain the equation of an oscillator with negative 
damping 

(375 )  
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This equation has unstable solutions for  all positive values of 7. Resistance 
instability has  been discovered in the case of the Orr-Sommerfeld equation 
with the presence of rigid boundaries. In an investigation of the Orr-Sommerfeld 
equation, Heisenberg [ 721 demonstrated that the effect of viscosity is generally 
destabilizing at very large Reynolds numbers. According to Lin [42] , 
Heisenberg's result states that, if a velocity profile has  an inviscid neutral 
disturbance with nonvanishing wave number and phase velocity,. the disturbance 
with the same wave number is unstable in a viscous fluid when the Reynolds 
number is sufficiently large. In view of the fact that the Orr-Sommerfeld 
equation possesses resistive instabilities, it is reasonable to assume that 
s imilar  instabilities exist in stratified shear  layer  and jet flows. Our know- 
ledge of these resist ive instabilities in stratified flows is meager, and the 
subject offers considerable opportunity for  the theoretician. The mathematical 
machinery of the Orr-Sommerfeld equation could serve as the start ing point 
for  this analysis. However, this equation is a fourth-order equation, while 
the corresponding equation for  the stratified flows is a sixth-order differential 
equation. 

Finally, the ultimate extension to this work can be made in the area 
of nonlinear fluid mechanics. The methods that can be used in this work could 
range from the direct  finite difference methods that abound in the field of 
meteorology to the elegant energy integral methods of Stuart [ 2 ] .  Additional 
contributions could be made by solving for the second- and higher-order 
instabilities mentioned initially in this report .  These nonlinear calculations 
would yield information about how the instabilities modify the basic s ta te  flow. 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

Marshall Space Flight Center, Alabama 358 12, June 1969 
933-50-02-00-62 
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